一、简述
场景简述:文件需要加载多个不同的模型同时运行从而导致cuda OOM,这些模型有的是用tf代码写的,有的是用PyTorch写的。
二、尝试过的失败方案
对于PyTorch而言,使用多GPU训练方案也许是一种可行的方案。
net = torch.nn.DataParallel(model, device_ids=[xxx])
但是由于也涉及到tf的model,因此这样并不能解决问题,运行起来依旧会报CUDA oom。
三、解决方案
1.调小batch_size
可以尝试将batch_size直接降到1,如果还是不行就只能考虑第二种方案。
2.手动指定不同model放到不同的GPU上
对于tf:
with tf.device('/gpu:2'):
com, rec = ComCNN(), RecCNN()
com.summary()
rec.summary()
对于PyTorch:
model = model.to(torch.device('cuda: X'))
或者是:
model = model.cuda(X) # X代表GPU编号
值得注意的是:不同的tensor之间如果需要进行运算的话,需要保证在同一个gpu上,将tensor指定到具体的gpu上:
data = data.cuda(X) # X代表GPU编号