目标分类和检测入门

目标分类、定位、检测和分割分类:是什么定位:在哪里?是什么?(单目标或数量固定的多目标)检测:在哪里?分别是什么?(数量不固定的多目标)分割:在检测的基础上,不再使用bounding box框出目标的位置,而是将目标和背景分离,找出目标的轮廓线。(图片来自博客)目标定位的思路看作回归问题。对于单个目标的定位,比较简单的思想就是直接看作是关于目标矩形框位置的回归问题,也就...
摘要由CSDN通过智能技术生成

目标分类、定位、检测和分割

分类:是什么

定位:在哪里?是什么?(单目标或数量固定的多目标)

检测:在哪里?分别是什么?(数量不固定的多目标)

分割:在检测的基础上,不再使用bounding box框出目标的位置,而是将目标和背景分离,找出目标的轮廓线。(图片来自博客)

目标定位的思路

看作回归问题。对于单个目标的定位,比较简单的思想就是直接看作是关于目标矩形框位置的回归问题,也就是把刻画矩形框位置信息的4个参数作为模型的输出进行训练,采用L2损失函数。对于固定的多个目标定位,也采用类似的方法,只不过输出由4个变成4*C个,C为需要定位的目标的类别数。这样,完整的识别定位问题的损失函数由两部分组成:第一部分是用于识别的损失,第二部分是用于定位产生的损失。显然这种方法对于目标数量固定的定位问题比较容易,当数量不定时(比如检测任务)就不适用了。

滑动窗口法。这种方法的一个典型代表是overFeat模型,它用不同大小的矩形框依次遍历图片中所有区域,然后在当前区域执行分类和定位任务,即每一个滑过的区域都会输出一个关于目标类别和位置信息的标签,最后再把所有输出的矩形框进行合并,得到一个置信度最高的结果。这种方法其实和我们人

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
(1)第一阶段(Region Proposals阶段):对一帧图像采用Selective Search算法得到最有可能是目标的2000个左右的Region Proposals(候选区域),改善了传统滑窗的思想(复杂度在10万-100万个候选区域),Selective Search算法采用合并超像素生成proposals(具体的详细的介绍参考第一篇论文《What makes for effective detection proposals?》)这是第一阶段,改善传统滑窗的笨方法,使得算法复杂度降低。 (2)第二阶段(特征提取):对于图像深层信息的理解,采用卷积神经网络抽取图像目标中卷积特征,这里需要主要的是:R-CNN会将上一阶段的2000张Region Proposals首先进行大小尺寸的归一化处理为227*227(像素大小),对每一个Region Proposals都要进行复杂的卷积计算(2000次同样的复杂卷积计算?对,没错,有一些细节差别很小的Region Proposals也要重新进行卷积计算,再强的GPU也HOLD不住这样折腾啊)。随后卷积层计算完成特征抽取完成之后,将全连接层的输出直接作为Region Proposals的特征信息,至此第二阶段完成。 (3)第三阶段(分类):这里跟传统的方法有似曾相识的感觉,根据特征(传统的方法利用人工特征模型,这里采用卷积神经网络全连接层输出作为卷积特征),利用支持向量机(这里我也做过一定的总结,有兴趣的可以作为参考)的方法将数据进行最大间隔可能的划分,使得分类效果达到预期效果

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值