图像分割模型及架构选型介绍(MMSegmentation|sssegmentation等)

本文详细介绍了图像分割的基本概念及其在人工智能领域的应用,重点探讨了多个深度学习图像分割框架,如MMSegmentation、SSSegmentation、PaddleSeg和TorchSeg,以及各个框架的特点和优势。此外,文章还列举并分析了多种图像分割模型,包括DeepLabv3+、U-Net、PSPNet、HRNet和Fast-SCNN等,为读者提供了模型选择的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考: https://zhuanlan.zhihu.com/p/618226513

0. 图像分割概述

图像分割通过给出图像中每个像素点的标签,将图像分割成若干带类别标签的区块,可以看作对每个像素进行分类。图像分割是图像处理的重要组成部分,也是难点之一。随着人工智能的发展,图像分割技术已经在交通控制、医疗影像和人脸识别等多个领域获得了广泛的应用。

图像分割是预测图像中每一个像素所属的类别或者物体。基于深度学习的图像分割算法主要分为三类:

  • 语义分割(semantic segmentation):可以理解为一个分类任务,对图片上每个像素进行分类。经典网络: FCN
  • 实例分割(Instance segmentation): 相比于语义分割对每个像素进行分类,比如所有飞机位置都用同一个颜色表示。但在实例分割任务中,分割的结果更加精细些。针对同一个类别的不同目标,也有不同的颜色进行区分。经典网络: Mask R-CNN
  • 全景分割(Panoramic segmentation): 全景分割可以认为是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值