自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

果乐果香

此事喝完谷粒多再说

  • 博客(113)
  • 收藏
  • 关注

原创 MAC JDK8 API

MAC 如何读JDK8.CHM

2023-02-08 10:15:01 283

原创 Shell Start-HowToRunShell-2022.05.18

开始运行shell脚本

2022-05-18 11:10:15 223

原创 zedboard教程

一,zedboard连线与通过vivado实现hallowordhttps://blog.csdn.net/feibiliuyun/article/details/69367151ZedBoard的接线,接线时需要注意两点: 1、两条micro-USB 线: ZedBoard的J17和J14都要与PC连接; 图片来源:http://svenand.blogdrive.com/archive/172.html#.WOUAcKIlHDc 接线参考:http://

2020-12-09 10:16:28 1646

原创 NP问题?SAT问题!

1. NP的英文全称是Non-deterministic Polynomial的问题,即多项式复杂程度的非确定性问题。简单的写法是 NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。2.P问题?所有可以在多项式时间内求解的判定问题构成P类问题。判定问题:判断是否有一种能够解决某一类问题的能行算法的研究课题。多项式时间例子:就是算法消耗的时间,与规模n呈多项式(O(...

2019-11-29 11:03:34 1707

转载 LaTeX使用IEEE模板 相邻参考文献为相同作者 默认用横线代替

虽然参考文献格式文件是从IEEE官网下载的,但在LaTeX中遇到同名作者的参考文献时,第一个参考文献的作者可以正常显示,其余参考文献的作者均被被横线(破折号)“——”代替。琢磨了解决方法并整理出来,方便遇到相同问题的朋友相互交流,共同进步。1. 找到参考文献格式文件位置,我的是“D:\Program Files\MiKTeX 2.9\bibtex\bst\ieeetran”;2. 打开IE...

2019-10-28 12:19:43 4884 2

原创 TensorFlow基本概念与用法

TensorFlow是用数据流图(data flow graphs)技术来进行数值计算的。数据流图是描述有向图中的数值计算过程。有向图中,节点通常代表数学运算,边表示节点之间的某种联系,它负责传输多维数据(Tensors)。节点可以被分配到多个计算设备上,可以异步和并行地执行操作。因为是有向图,所以只有等到之前的入度节点们的计算状态完成后,当前节点才能执行操作。一.TensorFl...

2019-10-22 16:40:08 752

原创 Ubuntu系统下安装Java全过程!

1,安装搜狗输入法;2,安装eclipse;3,安装jdk;//jdk位置应该和eclipse位置一致4,(1)安装tomcat; (2)5,安装MySQL;设置端口6.安装navicatnavicat问题7.安装intellj idea:The server time zone value 'PDT' is unrecognized or represent...

2019-10-07 19:40:56 573

原创 Spring boot

Spring Boothttp://c.biancheng.net/view/4624.htmlhttps://hollis.blog.csdn.net/article/details/90838026mycat:http://mycat.io/

2019-10-02 20:18:31 152 1

原创 Matalab画图小技巧

柱状体:A=[79,53,39;99,63,71];bar(A)legend('Oracle','Hive','MySQL'); %右上角标注set(gca,'XTickLabel',{'直接运行','修改后运行'});%设置x轴描述ylabel('SQL的数量') %y坐标的描述折线图:x=8:1:12;%x轴上的数据,第一个值代表数据开始,第二个值代表间隔,第三...

2019-09-23 13:09:24 466

转载 基于FPGA的实时视频图像采集处理系统

随着社会的不断发展,视频图像采集处理技术在许多行业领域中扮演着非常重要的角色,如军事、安全监控、工业视觉等领域,而各行各业对于视频图像采集和处理技术的要求也越来越高。高速、实时性是主要发展趋势之一。目前,视频图像采集与处理技术的发展主要分为两类:一是基于PC在相关特定的PCIe采集板卡的基础上,通过软件对视频图像进行处理;二是利用相关的集成硬件如DSP、MCU、FPGA等对视频图像进行采集处理[1...

2019-08-29 19:43:04 10500 1

原创 yodeling

这种唱法的特点是在演唱开始时在中、低音区用真声唱,然后突然用假声进入高音区,并且用这两种方法迅速地交替演唱,形成奇特的效果。假声又称假音,是人类通过控制声带发出的一种高于正常音域,或接近正常音域上限一个八度范围内的高音。真声是人们说话时声带全部振动。如果唱歌时声带也是全部振动,那么就是在用真音唱歌。真音发音的音色与歌者平时说话的音色基本相同。真声:人们日常说话的声音为真声。人的声...

2019-08-26 20:28:42 373

转载 CPU, DSP, GPU, FPGA对比

1. CPU一般来说CPU运算能力最弱,CPU虽然主频最高,但是单颗也就8核、16核的样子,一个核3.5g,16核也就56g,再考虑指令周期,每秒最多也就30g次乘法。还是定点的。2. DSPDSP虽然主频不如CPU,但是胜在乘法器多,随随便便带16个乘法器,还是浮点的。再来个4核,8核,还有特定的算法硬件加速,所以虽然主频只有1,2g但是运算能力还是比CPU强。当然现在出现了带专用...

2019-08-26 09:52:46 731 1

转载 深度学习硬件这件事,GPU、CPU、FPGA到底谁最合适?

二、数据的训练:CPU与GPU之争2.1、现状在如今的深度学习平台上,CPU面临着一个很尴尬的处境:它很重要又不是太重要。 它很重要,是因为它依旧是主流深度学习平台的重要组成部分:现百度首席科学家吴恩达曾利用16000颗CPU搭建了当时世界上最大的人工神经网络“Google Brain”并利用深度学习算法识别出了“猫”,又比如名震一时的“AlphaGo”就配置了多达1920颗CPU。...

2019-08-26 09:38:26 642 2

转载 2^N位二进制数的奇偶校验算法

本文链接:https://blog.csdn.net/alleincao/article/details/8174147首次说明一下,这个算法是针对位数为2^N的二进制数的。最近在搞Modbus,要求使用偶检验。想起以前看过一个效率很高的算法,但具体的怎样都想不起来,于是上Google搜索了一轮,终于找到当年看过的算法了:8位的数据D(D7~D0),他的算法为:D ^= D >...

2019-08-21 20:10:15 1353

原创 故障树分析法

1.布尔代数化简法:“或门”使用逻辑加(+),与门使用逻辑积(*),中间事件不断用下一层事件代替,知道全部用底事件代替,化简到若干个逻辑积的逻辑和,每个逻辑积代表一个割集,如下图:T=A*B=(c+x1)*(x2+d)=(x2*x3 +x1)*(x2+x4*x5)//结合吸收率和分配率=x2*x3*x2+x2*x1+x2*x3*x4*x5+x1*x4*x5=x1*x2+x2*x...

2019-07-25 11:02:38 11058

转载 sigmiod

天研究了很久的sigmoid,把学习结果总结一下。sigmoid的二分类问题。首先我们得有个样本,比如书上的例子。通过人的体重和年龄,来预测血脂的高低。那么数据形式就是[weight,age],血脂的高低用1和0表示,1表示高,0表示低。[1]或者[0]100个样本数据就是[[88,33],[78,25]......], 所对应的结果是[[1],[0].......], 意思是第一个人...

2019-07-02 21:15:08 544

转载 论文笔记:SGM: Sequence Generation Model for Multi-label Classification 感想

这篇文章是我在参加DeeCamp 2018课程的时候,发现的,当时原作者还只是研一,就中了一篇CCF B类的Best paper,这篇文章的工作跟我的工作非常的像,不过我没作者做得多,所以我发的论文的档次没他的高,anyway,我也学习一下,找一下灵感,模型的代码用pytorch写的,地址为:https://github.com/lancopku/SGM1. 介绍多标签分类(MLC,...

2019-06-14 09:13:05 737

转载 COLING2018《SGM: Sequence Generation Model for Multi-label Classification》

论文来源:COLING 2018 Best Paper论文链接:SGM: Sequence Generation Model for Multi-label Classification我记得我开知乎专栏的第一篇文章写的是如何去做关于用户评论的情感分类,这其实也是一个多标签分类 (Multi-label Classification,简称 MLC) 问题。这几天重温了一下目前关于多标签分类...

2019-06-13 16:13:39 1650 2

转载 论文笔记:多标签学习综述(A review on multi-label learning algorithms)

论文笔记:多标签学习综述(A review on multi-label learning algorithms)https://www.cnblogs.com/liaohuiqiang/p/9339996.html

2019-06-08 14:10:28 727

转载 PYNQ-Z2(六)理解pynq是如何用的

【PYNQ-Z2试用体验】玩转PYNQ系列:三、PYNQ数字图像处理之图像采集在硬件上,PYNQ-Z2为更好地扩展图像应用,同时配备了HDMI输入和HDMI输出端口。但硬件上并没有使用HDMI芯片进行控制,而是直接将HDMI接口连接到PL引脚。这意味着HDMI接口需要由可编程逻辑中的HDMI IP控制。在官方的PYNQ框架中,HDMI IP连接到PS DRAM,视频数据流可以从HDMI传输到内...

2019-06-02 21:59:15 10696 6

原创 理解python代码

如图, C是一个三维矩阵, 可以用python的scipy包读取C, 并转换为三维数组的形式# coding=utf-8import scipy.io as sioimport numpy as npdata = sio.loadmat(r'C:\Users\xiligey\Desktop\C3.mat') # 把这个路径改成你的mat路径即可print('scipy读取三维矩...

2019-05-20 14:40:42 321

转载 多标签分类(multilabel classification )

这几天看了几篇相关的文章, 写篇文章总结一下,就像个小综述一样, 文章会很乱 1、multilabel classification的用途 多标签分类问题很常见, 比如一部电影可以同时被分为动作片和犯罪片, 一则新闻可以同时属于政治和法律,还有生物学中的基因功能预测问题, 场景识别问题,疾病诊断等。 2. 单标签分类 在传统的单标签分类中,训练...

2019-05-18 20:02:01 2623

转载 多标签分类

多标签,即MultiLabel,指的是一个样本可能同时属于多个类,即有多个标签。比如一件L尺寸的棉服,则该样本就有至少两个标签——型号:L,类型:冬装。这里只贴两个链接,作为参考:解决多标签分类问题多标签(multi-label)数据的学习问题A review on multilabel algorithm综述是介绍多标签算法的机器学习如何处理多分类问题,其中ML...

2019-05-15 16:21:28 451

原创 moor8

基于PYNQ SOC平台——快速入门神经网络的建模与硬件加速

2019-05-07 15:00:57 293 1

转载 qt

1、安装Qt5Qt5的安装比Qt4的安装简单多了,我装的是Qt5.4(qt-opensource-windows-x86-mingw491_opengl-5.4.0.exe),它集成了MinGW、Qt Creator等,不需要你再单独下载MinGW和Qt Creator。首先,去Qt官网下载资源:qt-opensource-windows-x86-mingw491_opengl-5.4.0.e...

2019-04-24 19:19:01 158

转载 IC,MCU,模块区别

集成电路(integrated circuit)简称IC: 采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。MCU: 微控制单元,又称单片微型计算机或者单片机,是指随着大规模集成电路的出现及其发展,将计算机的CPU、RAM、ROM、定时计数器和多种I/O接口集成在一片芯片上,形成芯片级的计...

2019-04-17 21:39:11 10837

转载 图解十大经典机器学习算法入门

弱人工智能近几年取得了重大突破,悄然间,已经成为每个人生活中必不可少的一部分。以我们的智能手机为例,看看到底温藏着多少人工智能的神奇魔术。下图是一部典型的智能手机上安装的一些常见应用程序,可能很多人都猜不到,人工智能技术已经是手机上很多应用程序的核心驱动力。图1 智能手机上的相关应用传统的机器学习算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。这篇文章将对...

2019-04-01 10:17:21 193

转载 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

 前言:  找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。  纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,...

2019-04-01 10:15:36 272

原创 java中的小问题

java中的字符,字符串,数字之间的转换string 和int之间的转换string转换成int :Integer.valueOf("12")int转换成string : String.valueOf(12)char和int之间的转换首先将char转换成stringString str=String.valueOf('2')Integer.valueof(str...

2019-03-28 21:00:09 228

转载 马尔科夫链(Markov chain)5分钟简单入门,动态故障树

数学表达 条件一 …… 概率向量(状态向量) 条件二 …… 转移概率矩阵 例子 附录 1. 马尔科夫假设的概率理解 2. 参考 数学表达详细的数学表达还是建议看这里马克科夫链是一个随机系统,必须满足两个条件:系统任意时刻可以用有限个可能状态之一来描述 系统无后效性,即某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响 无后效性(附录有详细...

2019-03-17 21:13:22 1644

原创 pynq笔记

PS/PL InterfacesZynq在ps和pl之间有9个axi接口。(M:master 主 S:slave 从)在PL端,有4xAXI主(M)hp(高性能)端口,2xAXIGP(通用)端口,2xAXI从(S)GP端口和1xAXI主(M)ACP端口。在PS端,中也有GPIO控制器连接到pl。有四个pynq类用于管理Zynqps(包括ps dram)和pl接口之间的数据...

2019-03-11 20:31:06 1303 1

转载 马尔科夫蒙特卡洛方法

本文是一篇翻译作品,曾于2015-02-12 02:56:17发表于译言网。2018-06-25搬运至简书。原文链接:http://stats.stackexchange.com/questions/165/how-would-you-explain-markov-chain-monte-carlo-mcmc-to-a-layperson原文作者:Rich http://stats.stack...

2019-02-28 21:49:27 1245

转载 PYNQ板卡

看了PYNQ的相关资料,对PYNQ板卡有了一些自己的看法和观点,1、先说核心芯片。 PYNQ开发板的核心芯片是赛灵思公司的ZYNQ7020,该芯片由2个部分构成——PS和PL, 上图为ZYNQ的系统结构图,通俗的理解是PS是嵌入式开发,PL是FPGA逻辑开发,两者可以独立操作,好处嘛,那就是在单芯片的基础上,集成了ARM和FPGA的优点,而且,由于单芯片的使用,对PCB布线...

2019-02-27 20:02:37 6962 3

转载 PYNQ 用Python运行FPGA

http://www.openhw.org/module/forum/forum.phpPYNQ介绍PYNQ全称为Python Productivity for Zynq,即在原有Zynq架构的基础上,添加了对python的支持。Zynq是赛灵思公司推出的行业第一个可扩展处理平台系列,在芯片中集成了ARM处理器和FPGA可编程逻辑器件,旨在为视频监视、汽车驾驶员辅助以及工厂自动化等高端嵌入式...

2019-02-27 19:32:44 4290

转载 FPGA入门指南

https://www.bilibili.com/read/mobile/1833810 写给玩家的FPGA入门指南(5)——Veriloghttp://xilinx.eetrend.com/content/2018/100016713.htmlhttps://m.weibo.cn/status/4335668538756654?sourceType=qq&from=10920...

2019-02-26 10:05:06 575

转载 推开Zynq-7000的大门

1 背景知识在2010年4月硅谷举行的嵌入式系统大会上,赛灵思发布了可扩展处理平台的架构详情,这款基于无处不在的ARM处理器的SoC可满足复杂嵌入式系统的高性能、低功耗和多核处理能力要求。赛灵思可扩展处理平台芯片硬件的核心本质就是将通用基础双ARM Cortex-A9 MP Core处理器系统作为“主系统”,结合低功耗28nm工艺技术,以实现高度的灵活性、强大的配置功能和高性能。由于该新型器件...

2019-02-26 10:01:45 502

转载 FPGA工程师最核心的就是全栈能力

这里的全栈,指的是系统级的软硬件全栈能力。它既包括了在系统层面的架构设计、芯片开发的前后端流程,也包括了软件设计的全栈流程,甚至还有后期的项目维护、技术支持、与客户的沟通等等软技能。它可以看成是综合多种技能的技能树。 老石随手写了一下FPGA工程师的全栈技能树,见下图,尽管很不完整,但仍可供大家参考。之前很多人提到的,诸如调试与分析的能力,其实是这个全栈技能树里的一片树叶,或一个分支。...

2019-02-26 09:57:31 3500

转载 ARM、MCU、DSP、FPGA、SOC你知道是什么吗?

ARMARM处理器是Acorn计算机有限公司面向低预算市场设计的第一款RISC微处理器。更早称作Acorn RISC Machine。ARM处理器本身是32位设计,但也配备16位指令集,一般来讲比等价32位代码节省达35%,却能保留32位系统的所有优势。ARM历史发展:1978年12月5日,物理学家赫尔曼·豪泽(Hermann Hauser)和工程师Chris Curry,在英国剑...

2019-02-26 09:54:42 1226

转载 基于FPGA的深度学习推理获得突破

神经网络和深度学习入门神经网络松散地模拟人脑中的神经网,是深度学习(DL)的基础,这是一个复杂的数学系统,可以自己学习执行任务。通过查看许多示例或关联,NN可以比传统的识别程序更快地学习连接和关系。训练就是基于对数百万同一类型的样本的学习来配置NN以执行特定任务的过程。例如,一个NN可能聆听许多声音样本并使用DL来学习“识别”特定单词的声音。然后,该NN就可以筛选新的声音样本清单,并使用称...

2019-02-26 09:53:57 1568

转载 #基于FPGA的摄像头VGA模块#

摄像头显示图像整个模块包含了摄像头对图像的捕捉 捕捉数据的传输 捕捉数据显示在LCD屏幕上。初始时,IIC协议对摄像头初始化。由状态机完成地址和数据的配置,从ROM里读出数据(ROM事先存着VGA数据)这些数据经过iic读写时序整合模块发送到CMOS摄像头里。CMOS初始化后开始输出数据到image_capture模块,主要信号:image_pclk、href(行同步信号,高电平有效)D[7:...

2019-02-26 09:52:48 1299

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除