pandas处理,填充缺失数据

本文介绍了如何使用Pandas处理缺失数据,包括使用dropna删除包含NaN的数据,以及使用fillna方法填充缺失值,如常数值、字典指定不同列的填充值,并提到了fillna的参数选项。
摘要由CSDN通过智能技术生成

1、pandas使用浮点值NaN表示浮点和非浮点数组的缺失数据

对于一个Series可以用dropna方法或者通过布尔型索引达到目的

2、对于DataFrame丢弃全NA

丢弃全为NA的那些行

丢弃全为NA的那些列

利用thresh,留下一部分观测数据

thresh=3,表示在行方向上至少有3个非NAN的项保留


填充缺失数据

用fillna的方法,将缺失值替换为常数值

通过一个字典调用fillna实现对不同的列填充不同的值

对r

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值