1、pandas使用浮点值NaN表示浮点和非浮点数组的缺失数据
对于一个Series可以用dropna方法或者通过布尔型索引达到目的
2、对于DataFrame丢弃全NA
丢弃全为NA的那些行
丢弃全为NA的那些列
利用thresh,留下一部分观测数据
thresh=3,表示在行方向上至少有3个非NAN的项保留
填充缺失数据
用fillna的方法,将缺失值替换为常数值
通过一个字典调用fillna实现对不同的列填充不同的值
对r
1、pandas使用浮点值NaN表示浮点和非浮点数组的缺失数据
对于一个Series可以用dropna方法或者通过布尔型索引达到目的
2、对于DataFrame丢弃全NA
丢弃全为NA的那些行
丢弃全为NA的那些列
利用thresh,留下一部分观测数据
thresh=3,表示在行方向上至少有3个非NAN的项保留
填充缺失数据
用fillna的方法,将缺失值替换为常数值
通过一个字典调用fillna实现对不同的列填充不同的值
对r