组合数学第一章复习

本文详细介绍了组合数学的基础概念,包括基本计数法则、排列与组合的定义、圆周排列和排列生成算法。通过实例解析了排列生成的序数法和字典序法,以及组合的生成算法。此外,还讨论了允许重复的组合计数问题及其应用。
摘要由CSDN通过智能技术生成

从广义上讲组合数学就是离散数学。

1.1 基本计数法则

加法法则

若 |A| = m , |B| = n , A ⋂ \bigcap B = ⊘ \oslash , 则 |A ⋃ \bigcup B| = m + n 。

乘法法则

若 |A| = m , |B| = n , AxB = {(a,b) | a ∈ \in A,b ∈ \in B}, 则 |A x B| = m · n 。

【例】求小于10000的含1的正整数的个数。

  • 小于10000的不含1的正整数可看做4位数,但0000除外
  • 小于10000的不含1的正整数的个数有 9 4 − 1 = 6560 9^4-1=6560 941=6560
  • 小于10000的正整数的个数有 1 0 4 − 1 = 9999 10^4-1=9999 1041=9999
  • 小于10000的含1的正整数的个数:9999-6560=3439

【例】求小于10000的含0的正整数的个数

  • 不含0的1位数有9个,2位数有 9 2 9^2 92个,3位数有 9 3 9^3 93个,4位数有 9 4 9^4 94个 ,共7380个

  • 小于10000的含0的正整数的个数为:9999-7380=2619
    #1.2 一一对应
    【例】n个人参加单淘汰赛,最后产生冠军的过程,需要多少场比赛?

  • 比赛的台数和每一场淘汰一名选手一一对应

  • 答案:n-1
    【例】求 n 2 n^2 n2个人站成n排的方案数

  • 站成n排和站成1排一一对应

  • 答案: n 2 ! n^2! n2!

【定理】带n个有标号1,2,…,n的顶点的树的数目等于 n n − 2 n^{n-2} nn2(n>=2)
这里写图片描述

1.3 排列与组合

排列的定义

设A={a1,a2,…,an}是n个不同的元素的集合,任取A中r个元素__按顺序__排成一列,称为从A中取r个的一个排列,其数目记为P(n,r) ,r满足0≤r≤n。
排列可以看作n个不同的元素取r个放进r个不同的盒子的放法.

  • 从n个不同的球中取一个球放在第一个盒子中,
  • 从余下的n-1个球中取一个球放在第二个盒子中,
  •     …………………………………
    
  • 从余下的n-(r-1)个球中取一个放在第r个盒子中

根据乘法法则:
P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
全排列:P(n,n)=n(n-1)…2×1=n!

组合的定义

当从n个不同元素中取出r个而__不考虑它的顺序__时,称为从n中取r个的组合,其数目记为C(n,r)。
因为组合不考虑顺序,所以组合数会比排列数少很多。
C(n,r)=P(n,r)/r! =n!/[r!(n-r)!]
C(n,r)=C(n,n-r)

圆周排列的定义

在排列中,如果我们不横排而是将各元素排列在一个圆周上,那么我们称这种排列方式为圆周排列。规定相对位置不变算同一个圆周排列。将从n中取r个作圆排列的排列数记作Q(n,r)。
在排列中1234,2341,3412,4123为四个不同的排列,而在圆周排列中这些排列是一个。
从n中取r个作排列,与圆排列相比,重复了r倍
Q(n,r)=P(n,r)/r
Q(n,r)=P(n,r)/r=n!/r(n-r)!
Q(n,n)=P(n,n)/n=n!/n=(n-1)!
这里写图片描述
【例】5对夫妇出席一宴会,围一圆桌而坐,试问有几种不同的方案?若要求每对夫妻相邻又有多少种方案?

  • (1)Q(10,10)
  • (2)Q(5,5)* 2 5 2^5 25
    #1.4 多重集的排列
    设S是一个多重集,有K个不同类型的元素,各元素的重复分别为n1,n2,…,nk,n=n1+n2+…+nk,则多重集S的全排列数为: n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n1!n2!...nk!}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值