从广义上讲组合数学就是离散数学。
1.1 基本计数法则
加法法则
若 |A| = m , |B| = n , A ⋂ \bigcap ⋂B = ⊘ \oslash ⊘ , 则 |A ⋃ \bigcup ⋃B| = m + n 。
乘法法则
若 |A| = m , |B| = n , AxB = {(a,b) | a ∈ \in ∈A,b ∈ \in ∈ B}, 则 |A x B| = m · n 。
【例】求小于10000的含1的正整数的个数。
- 小于10000的不含1的正整数可看做4位数,但0000除外
- 小于10000的不含1的正整数的个数有 9 4 − 1 = 6560 9^4-1=6560 94−1=6560
- 小于10000的正整数的个数有 1 0 4 − 1 = 9999 10^4-1=9999 104−1=9999
- 小于10000的含1的正整数的个数:9999-6560=3439
【例】求小于10000的含0的正整数的个数
-
不含0的1位数有9个,2位数有 9 2 9^2 92个,3位数有 9 3 9^3 93个,4位数有 9 4 9^4 94个 ,共7380个
-
小于10000的含0的正整数的个数为:9999-7380=2619
#1.2 一一对应
【例】n个人参加单淘汰赛,最后产生冠军的过程,需要多少场比赛? -
比赛的台数和每一场淘汰一名选手一一对应
-
答案:n-1
【例】求 n 2 n^2 n2个人站成n排的方案数 -
站成n排和站成1排一一对应
-
答案: n 2 ! n^2! n2!
【定理】带n个有标号1,2,…,n的顶点的树的数目等于 n n − 2 n^{n-2} nn−2(n>=2)
1.3 排列与组合
排列的定义
设A={a1,a2,…,an}是n个不同的元素的集合,任取A中r个元素__按顺序__排成一列,称为从A中取r个的一个排列,其数目记为P(n,r) ,r满足0≤r≤n。
排列可以看作n个不同的元素取r个放进r个不同的盒子的放法.
- 从n个不同的球中取一个球放在第一个盒子中,
- 从余下的n-1个球中取一个球放在第二个盒子中,
-
…………………………………
- 从余下的n-(r-1)个球中取一个放在第r个盒子中
根据乘法法则:
P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
全排列:P(n,n)=n(n-1)…2×1=n!
组合的定义
当从n个不同元素中取出r个而__不考虑它的顺序__时,称为从n中取r个的组合,其数目记为C(n,r)。
因为组合不考虑顺序,所以组合数会比排列数少很多。
C(n,r)=P(n,r)/r! =n!/[r!(n-r)!]
C(n,r)=C(n,n-r)
圆周排列的定义
在排列中,如果我们不横排而是将各元素排列在一个圆周上,那么我们称这种排列方式为圆周排列。规定相对位置不变算同一个圆周排列。将从n中取r个作圆排列的排列数记作Q(n,r)。
在排列中1234,2341,3412,4123为四个不同的排列,而在圆周排列中这些排列是一个。
从n中取r个作排列,与圆排列相比,重复了r倍
Q(n,r)=P(n,r)/r
Q(n,r)=P(n,r)/r=n!/r(n-r)!
Q(n,n)=P(n,n)/n=n!/n=(n-1)!
【例】5对夫妇出席一宴会,围一圆桌而坐,试问有几种不同的方案?若要求每对夫妻相邻又有多少种方案?
- (1)Q(10,10)
- (2)Q(5,5)* 2 5 2^5 25
#1.4 多重集的排列
设S是一个多重集,有K个不同类型的元素,各元素的重复分别为n1,n2,…,nk,n=n1+n2+…+nk,则多重集S的全排列数为: n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n1!n2!...nk!}