组合数学
第 1 章 排列、组合、二项式定理
1.2 排列与组合
1.2.1 集合的排列
注:r圆排列数不要和组合数搞混了
1.2.2 集合的组合
1.3 多重集合的排列与组合
1.3.1 多重集合的排列
1.3.2 多重集合的组合
注:这里是无限多重集合,2.2.1介绍了如何求任意重集合的r组合数
1.4 二项式定理
1.4.1 二项式定理的证明
1.4.2 二项式系数的基本性质

1.4.3 组合恒等式
1.4.4 多项式定理

1.5 集合的分划与第 2 类 Stirling 数
1.6 正整数的分拆
1.6.1 有序分拆
1.6.2 无序分拆
1.6.3 分拆的 Ferrers 图
不考
1.7 分配问题*
1.8 习题
第 2 章 容斥原理与鸽巢原理
2.1 容斥原理
2.1.2 容斥原理的 3 个形式
2.1.3 应用举例
2.2 容斥原理的应用
2.2.1 具有有限重复数的多重集合的 r 组合数
不是很懂
2.2.2 错排问题
集合{1, 2, …, n}的一个错排是该集合的一个满足条件 i ≠ j 的全排列 i 1 i 2 … i n i_1i_2…i_n i1i2…in,即集合{1, 2, …, n}的没有一个数字在它的自然顺序位置上的全排列。
2.2.3 有禁止模式的排列问题
2.2.4 n 对夫妻问题(ménage)
没看
2.3 Möbim 反演
不考
2.4 鸽 巢 原 理
2.4.2 鸽巢原理的形式
2.5 Ramsey 问题与 Ramsey 数
不考
2.6 习 题
第 3 章 递 推 关 系
3.1 递推关系的建立
3.2 常系数线性齐次递推关系的求解
easy
easy~
3.3 常系数线性非齐次递推关系的求解
3.4 用迭代法求解递推关系
3.5 Fibonacci 数和 Catalan 数
3.6 习 题
第 4 章 生 成 函 数
]
[外链图片转存中…(img-PFFj6NKj-1640185573123)]
[外链图片转存中…(img-ijJKBT0Q-1640185573123)]
[外链图片转存中…(img-rD1hlauk-1640185573123)]