【代码随想路Day52 动态规划part13】300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

Day52

300.最长递增子序列

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度。一定是包括nums[i]的,所以最大值不一定是dp[nums.length - 1]。而是取dp数组的最大元素。

class Solution {
   public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int dp[] = new int[n];
        Arrays.fill(dp, 1);
        int res = 0;
        for (int i = 0; i < nums.length; i++) {
            for (int j = 0; j < i; j++)
                if (nums[i] > nums[j]) {
                    dp[i]  = Math.max(dp[i], dp[j] + 1);
                }
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

674.最长连续递增序列

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int n = nums.length;
        int dp[] = new int[n];
        int res = 1;
        Arrays.fill(dp, 1);
        for (int i = 1; i < n; i++) {
            if (nums[i] > nums[i - 1]) dp[i] = dp[i - 1] + 1;
            res = Math.max(res, dp[i]);
        }
        return  res;
    }
}

718.最长重复子数组

dp[i][j]表示的含义,都是结果中包含nums1[i -1]和nums2[j-1],这样才能递推

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
        int dp [][]  = new int[nums1.length + 1][nums2.length + 1];
        int res = 0;
        for (int i = 1; i <= nums1.length; i++) {
            for (int j = 1; j <= nums2.length; j++) {
                if (nums1[i - 1] ==  nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                res = Math.max(res, dp[i][j]);
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值