卷首语
最近在写一本关于“好运”的书,所以读的东西都和”好运“有关~
《详谈 | 青山周平:怎样的选择会带来好运?》:独特的选择,创造非共识红利
《人生有四种好运,如何提高自己的运气?》:用数量确保质量,用化学反应创造成果
《王信文 | 行走江湖,主要靠运气》:看起来披荆斩棘,其实全靠运气
《设计运气就是设计人生》:同样的运气,不同的配置,不同的收益
Chengwei Liu on Skill versus Luck:量化测量运气 & 从中套利
晚上直播聊聊这些哈~
任鑫读书
,
01月12日 20:30 直播
已结束
今晚聊聊好运,量化、测量运气并从中套利
视频号
详谈 | 青山周平:怎样的选择会带来好运?
🔗 https://mp.weixin.qq.com/s/XJPSAph1T9gTDuPzA1nKLA
给青山周平创造好运的选择:
2005 年,选择到中国工作。
学会中文后,选择在北京胡同里生活,感知本地文化。
2015 年,花半年时间参加东方卫视的《梦想改造家》,把南锣鼓巷里一个 35 平米杂乱无章的小房子,改造成充满设计感的住宅。
这几件事情,刚好又匹配了他的个人优势和时代趋势。
-
个人优势
整体人设和表达方式,长得干干净净,说话不疾不徐,日本人(大众还是觉得日本人做事匠心),这就很适合做 IP。不论是上电视还是做演讲,都很讨喜。
-
时代趋势
近些年老城区改造热门,而且越来越多人对于如何利用好小空间有刚需(看看宜家的广告就知道了)。
所以,难以有足够数据建模预测的时候,用类似青山周平的策略挺好。
选择小众的路线,用上自身优势,回应社会变化中产生的真实问题。
这样就先保证了不败。
而且,这条路还会产生“非共识红利”(不是这篇内容,来自Prof. Chengwei Liu 所说的 Smarter Contratrian)——不影响中奖率,但是影响中奖后分到的奖品比例。
举例来说,六合彩,自己选数字,看起来是个公平的游戏,不大可能有策略来创造超过其他竞争者的好运。
但实际上,虽然规则是公平的,但人类参与方式是有扭曲的。
从统计数据看,有一些数字明显比另一些数字更受欢迎,比如 1-31 就比 32-49 会被更多人选择。很多时候是因为彩民会选自己的”幸运数字“,而这个幸运数字常常和生日相关,所以会发现 31 以上的数字就很少被选。
所以,同样是买六合彩,如果选择的数字更多在 31 以上,中奖概率并不会发生变化,但是如果中奖,和你选择同样号码中奖的人会少很多,分到的钱的比例会更大。
于是很神奇的,在一个公平的博彩中,居然也可以创造出好运。
人生有四种好运,如何提高自己的运气?
🔗 https://mp.weixin.qq.com/s/u9KU7gDSn1Yf7IPcA01E4w
四种好运的概念,已经被万维钢和 Naval 说过 10000 遍了。
比较有意思的两个点,刚好适合塞我新书里做例子~
一是”用数量确保质量“,中彩票的奥义是多买彩票。
一个人所能找到的有影响力的、成功的创意数量,同他想到的创意总数成正比。据估算,贝多芬有722部音乐作品,巴赫有超过1000部,爱迪生有1093项发明专利,毕加索创作过约1800幅油画、1200件雕塑、2800件瓷器、1.2万张图纸,以及数不清的版画、地毯和挂毯——其中你能记住的,被世人认可的,屈指可数。
二是“运气靠化学反应”,遭遇只是一部分,关键是脑子里把它和别的事情连接起来创造化学反应,产生新的可能性。
王信文 | 行走江湖,主要靠运气
🔗 https://mp.weixin.qq.com/s/pli8oG9cshn2Gs_o-QWpEw
这些年的创业,看起来顺风顺水,披襟斩棘,但其实主要都是靠运气。
其实最关键,是选对了 2013 年入场。
早一点,还需要教育市场;晚一点,竞争又白热化了。
那么是怎么高瞻远瞩选对这个时间点呢?
是因为天天打游戏,绩效拿到最差,在腾讯混不下去了,只好创业。
回过头想我自己的打工和创业。
其实最终回报大小,40% 取决于进了哪个赛道,40% 取决于时间点。
最多最多有 20% 取决于能力吧。
但赛道的选择,很多时候是随机的……我毕业选新蛋,70% 是因为给的工资高。
而时间点,很多时候只是因为刚好凑齐了,并没有能力算清楚……2011 年创业,只是因为刚好中欧毕业 + 在某跨国公司做了几天”高管“做得很不爽 + 刚好老同事想创业。
选择比努力更重要。
但选择……很多时候并不是书上那么严谨评估,绝大部分时候就是”撞上了”。
具体会撞上什么,就是命了。
只是如果这样说,大众是不买账的。
大家还是喜欢看天道酬勤的故事。
所以王信文说,他请教日本知名偶像团体的老板经营女团的秘诀,对方告诉他——“不要找才艺最好的,要找中等的,这样粉丝才能看到努力和成长,才会一直支持。“
我们之所以脑子里有那么多错误的观念,是因为被莫名其妙洗脑了。
为什么会被洗脑呢,因为我们爱听。
设计运气就是设计人生
🔗 https://mp.weixin.qq.com/s/TZJy9askyi6pha_ywAxRmQ
文章是老喻的,但在孤独大脑上居然没找到……
主要有意思的角度是:配置层。
我们在过日子的时候,经常会觉得自己人生是线性的、单层的。
每天的遭遇一个又一个,处理问题一个又一个。
很少会想到做 pipeline,做池子,做配置。
但如果你在公司做销售,大概率你会被要求要攒线索(leads)池,要给每个线索打标签(处理到了什么阶段,是否高价值之类),还得时常看这个池子决定要主攻哪些放弃哪些。这样运转更流畅,最后的劳动回报率也更高。
过日子也是这样,不见得我们要遇到一件事儿处理一件,遇到一个机会抓一个。
而是要尽可能多采集,多识别,然后放到一个池子里,识别出价值最高把握最大的,再出手。
巴菲特盛赞的泰德•威廉姆斯在他的《击球的科学》一书中写道:对于一个攻击手来说最重要的事情就是等待最佳时机的出现。
他会把击打区划分成 77 个棒球那么大的格子,给每个格子打上不同的分数,只有当球落在最佳”格子“时,他才会挥棒。
泰德•威廉姆斯把自己的“概率世界”变成了三层。
一层是”我得到了什么球“,这个其实是老天爷(和对手)决定的,做不了什么;
一层是”我评估这个球,做出选择“,这个是配置层,我们选择在不同的球上如何配置资源,选择在自己人生哪些问题(机会)上花多少精力。
一层是”挥棒“,这个是执行层,主要就靠能力和当下的运气。
看起来,好像配置层没什么用。
但实际上,可能是我们最能够以小博大做好运设计的地方。
举个例子:
有100个红色球和100个蓝色球,请你任选组合将全部球放入2个罐中。放好后随机取一个罐子,再从此罐中随机取出一个球,如果取到红球赢100元钱,问如何组合放球能最大化赢钱机会?
看起来是不是只有 50% 胜算?
其实只要在配置层动动脑筋,可以做到 74.87% 概率赚钱。
评论区写一下你的方法?:)
运气总是偏爱坚持的人
🔗 https://mp.weixin.qq.com/s/AXOIzOCy9CoYFmqn9Jw36A
鸡汤一下。
乔布斯。
1985 年,被自己的董事会干掉,被自己创建的公司扫地出门。
1997 年,苹果陷入危机,他回归,重新执掌公司。
运气的部分是:刚好苹果陷入危机 & 需要新操作系统,刚好乔布斯的 NeXT 有新的操作系统,意料之外的很匹配,所以才有了回归的机会。
但非运气的部分是:乔布斯一直在折腾。虽然 NeXT 我印象中主要在瞎折腾,但总归搞出来一个能卖的东西;另外折腾 Pixar 给自己赚了很多钱(Disney 股票?)。
如果被干掉之后消沉下去什么也不做,之后的所谓“运气”也就无从谈起。
Chengwei Liu on Skill versus Luck
🔗 https://www.youtube.com/watch?v=nnz8zOGQs8M (关键词:Behavioural Data Science Seminar Series: Chengwei Liu on Skill versus Luck)
找到了一个研究“运气“的华人教授~
听了一下他的演讲,觉得两个点非常有意思。
一是用量化(和视觉化)的方式来测量运气在不同领域的影响。
二是非常实在在讨论,如何应用我们对”运气“的认知,真实套利创造价值。
首先,我们假设技能是正态分布的,而运气的分布更加肥尾(或者干脆就是平的)。
那么很自然的,如果成功取决于”技能+运气“(或者技能x运气),那么在表现极高或者极低的区域,运气造成的影响更大。
比如一个考试,只有 1% 的学生能考上 800 分,1% 的学生会考 100 分以下。
只要能上 800 分,就能上清华;如果低于 100 分,就要被打一顿。
假设大部分靠实力,运气只能影响正负 40 分。
这时,综合实力在 840 分以上的绝对强者(可能只有0.1%),怎么都能上清华。
而综合实力在 760 ~ 840 之间的这批人,实际拿到的分数会是 720 ~ 880。
最后把上清华的名单列出来,会发现其中有不少是平时 760 ~ 800 分,但是很好运气的学生。
清华录取名单里,”好运气升上来“的人的比例很高,”好运“在其中扮演了更重要的作用。
可能你会发现一个问题:凭只说上清华的人靠好运呢?
考上上海大学的,不也有很多是超常发挥才考上的么?这有什么区别呢?
区别在于,读上海大学的,也有不少是运气不好掉下来的……
所以上海大学录取名单里,综合有“运气好升上来”和“运气不好掉下来”两类人。
两相抵消,在“上海大学学生”这个整体上,我们不能说”他们应该运气蛮好的”。
泛化一下,就是当我们看到表现“比较优秀”的人时,可以认为他的表现和能力差不多,能到现在这个表现,可能是因为好运也可能因为霉运,下一次可能表现更好,也可能更差。
但是,当我们看到表现“绝对牛逼”的人时,要从数学上理解,这家伙“很可能是上次碰到好运气了”,TA 下一次表现比现在差的概率更高。
我用考试做例子,其实不太恰当,因为大家感觉上考试中主要还是靠实力,运气影响没那么大。但这里就牵扯出一个问题:我们如何衡量一件事儿里面,运气影响大小呢?
Chengwei Liu 用的方式很直观。
他做一张图,横轴是第 t 个阶段的表现,纵轴是第 t+1 阶段的表现。
如果完全和运气没关系,理论上你上次牛逼这次应该还牛逼,上次 SB 这次应该还 SB,上次考 84 分这次还考 84 分。
整体来说,这根线应该是 45 度的斜线(下一次表现合着一起一样,全靠实力):
如果走到另一个极端,全靠运气——比如丢色子。
下一次表现和这一次毫无关系,全靠运气。
这次丢出来一个 6 还是丢出来一个 1,不重要,下次丢出来的数学期望总是 3.5。
整条线应该是水平的。
而我们实际生活当中遇到的各种事儿,比如考试、比赛、工作、打麻将……
应该都介于这两者(纯粹靠实力 vs. 纯粹靠运气)之间,那条线应该在 45 度斜线和水平横线中间。
Chengwei Liu 对各行各业的数据做了分析。
比如音乐行业,我们会发现这条线接近水平——和丢色子的线差不多,接近水平。
说明,“一个歌星的专辑,这次卖得好,不代表下次卖得好”。
更进一步,Chengwei Liu,把这个曲线切成了两段。
我们会发现,第一段还是有点坡度向上,第二段就是坡度向下了。
什么意思呢?就是说,如果这个人这次在金曲榜第 30 名,那么他下次表现大概率会比金曲榜第 50 名那个音乐家好;但是,如果这个人这次在金曲榜第 5 名,那么他下一次表现大概率会比这次金曲榜第 20 名的人表现更差。
最最极端的高表现,都是运气的产物,很难复制。
或者换个不严谨的表达,就是进入到金曲榜前 100 需要靠实力,但是具体排名多少就有很大的运气成分了。越是要走到前几名,越要靠运气,所以下一次越难复现成功。
比如《江南 Style》风靡全球,其实就有很大的运气成分,很难再来一遍。
如果不以音乐家来看表现,而是看他们的公司厂牌。
会发现在“比较好”表现上,公司的实力体现还是很明显的,能够做出好唱片的公司继续能做出好唱片。但是!在极端成功的那些唱片上,公司也没有能力复现——比音乐家的曲线更夸张更陡峭。
后面他又分析了学术界和方程式赛车,感兴趣的可以看视频。
曲线有差别,但大逻辑比较类似。
在中间状态,运气扮演的角色较小(其实是相互抵消了)。
在极端表现的人群中(最好和最坏),运气扮演了更重要角色——反过来说,最优表现的人,下次大概率会表现差一点;最差表现的人,下次大概率会表现好一点。
感觉上绕了一大圈,又回到了均值回归上~
但他很清晰地给了套利的方法。
如果其他人都认为“表现越好的人下一次表现好的概率越高”,而我们清晰地看到了折线,那么就意味着有一些资产被错误定价(比如这次拿了金曲榜第 20 名的歌手,价值并不比金曲榜第一名歌手低,但要价肯定低),可以捡漏。
更直接的方法是,既然我们知道在曲线在极端表现的两头会异常(但大众并不理解),那么大众在赌球时给不同球队的定价也会是错误的。如果我们在每个赛季第一场买“上赛季最差球队赢球”和“上赛季最好球队输球”,概率上就能赢钱。
更有普适性的是,我们听故事时可以让自己更清醒一点。
一般说起来,公司表现越是极端,我们越是会把公司表现归因于领导者个人能力。
比如字节跳动牛逼到像个 bug,所以我们会觉得张一鸣是神。
比如柯达把一手好牌打烂,所以我们会觉得他们职业经理人管理果然不行。
但如果我们相信数学,相信刚刚的曲线。
其实字节和柯达这两种极端情况里,“运气”发挥作用的比例更高。
其实……可参考性更低,可复制性更差。
最经典的例子就是柯林斯那本《从优秀到卓越》。
他挑的都是“卓越”的公司,也就是极端现象,总结他们的成功经验。
成书后 5 年里,书里赞扬的公司里 1/3 破产,2/3 表现弱于大盘。
就好像前面那个两截的曲线。
“优秀”的表现,里面主要靠的是能力,如果有共性,是可以学习的。
“优异”(优秀到极端异常)的表现,里面反倒是“好运”起到更大比例作用,很难参考和复现,不要太当真。