图像处理之低通滤波

在图像处理或者计算机视觉应用中,在正式对图像进行分析处理前一般需要一个预处理的过程。预处理是对图像作一些诸如降维、降噪的操作,主要是为后续处理提供一个体积合适的、只包含所需信息的图像。这里通常会用到一些滤波处理手法。滤波,实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号,其中像素点灰度值的高低代表信号的强弱。对应的高低频的意义:

高频:图像中灰度变化剧烈的点,一般是图像轮廓或者是噪声。

低频:图像中平坦的,灰度变化不大的点,图像中的大部分区域。

根据图像的高频与低频的特征,我们可以设计相应的高通与低通滤波器,高通滤波可以检测图像中尖锐、变化明显的地方;低通滤波可以让图像变得光滑,滤除图像中的噪声。OpenCV中提供的低通滤波有:线性的均值滤波器、高斯滤波器,非线性的双边滤波器、中值滤波器;高通滤波有基于Canny,Sobel等各种边缘滤波。这里大家可以看到低通滤波和高通滤波其实是相互矛盾的,但很多时候在做边缘检测前我们又需要进行低通滤波来降噪,这里就需要调节参数在保证高频的边缘不丢失的前提下尽可能的多去除图片的噪点。

 

线性滤波器

线性滤波器可以看做是用一个矩阵(滤波器的核)完整扫过源图片得到新图像,其中扫描的方式称为卷积。这里先介绍下核和卷积这两个概念。

核 说白了就是一个固定大小的数值矩阵。该数组带有一个锚点 ,一般位于矩阵中央,如下图的-4。核可以是OpenCV已经定义好的均值滤波器核和高斯滤波器核,也可以自定义核。

卷积 的计算方法其实也很简单:

 

  1. 将核的锚点放在该特定位置的像素上,同时,核内的其他值与该像素邻域的各像素重合;
  2. 将核内各值与相应像素值相乘,并将乘积相加;
  3. 将所得结果放到与锚点对应的像素上;
  4. 对图像所有像素重复上述过程。

 

用公式表示上述过程如下:

下图为例,核锚点在中央,锚点放在源图红色区96的位置,分别相乘后求和,得到92为滤波后图像的值。这里对比结果图和源图,可以发现源图四周一圈的像素点已经丢失了,这里OpenCV提供的函数会自动帮我们补齐周围一圈使得源图和结果图尺寸一样。

知道原理之后,再来看看常用的滤波和如何自定义线性滤波器吧。

均值滤波

 

blur( src, dst, size, anchor = Point(-1,-1), borderType);

这个滤波是一个平滑图像的滤波器,它用一个点邻域内像素的平均灰度值来代替该点的灰度,看它的核就很容易理解了:

高斯滤波

 

cv::GaussianBlur(src, dst, cv::Size(5,5), 1.5);

 

上面的均值滤波的平滑原理是用邻域内的平均值来代替当前的灰度值,但是我们往往希望越靠近该像素的点提供越高的权重,这样就产生了高斯模糊滤波。它的核是一个高斯分布的二维矩阵,中间大,向四周逐渐减小。

自定义线性滤波器

我们还可以自己设计核来完成个性化的滤波需求,根据原理我们也可以自己编程遍历图像像素做卷积求得结果,但更安全方便的方法是使用OpenCV函数 filter2D 创建自己的线性滤波器。

 

filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT );

 

前面的滤波都是模糊处理的,比如现在需要锐化图像,那可以很简单的设置一个核为即可。

非线性滤波

中值滤波

中值滤波将图像的每个像素用邻域 (以当前像素为中心的正方形区域)像素的中值代替。比如上图源图的红色区域里,中值是96,所以结果图中该点的值为96。

非双边滤波

双边滤波是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。这个滤波器相对复杂,具体原理可以看这.

http://blog.csdn.net/abcjennifer/article/details/7616663

  • 22
    点赞
  • 101
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 巴特沃斯低通滤波是一种常用的图像处理方法,它可以去除图像中的高频噪声,使图像更加清晰。在实验中,我们可以通过对不同滤波器参数的调整,观察图像处理结果的变化,从而得出一些结论和分析。 首先,我们可以通过调整巴特沃斯滤波器的截止频率来观察图像的变化。当截止频率较低时,可以看到图像变得模糊,细节丢失较多。而当截止频率较高时,图像则变得更加清晰,但是可能会保留一些高频噪声。 其次,我们还可以通过比较巴特沃斯滤波器和其他滤波器的效果来进行分析。例如,与理想低通滤波器相比,巴特沃斯滤波器可以更好地保留图像的细节,并且在滤波后的图像中没有出现明显的振铃效应。与高斯滤波器相比,巴特沃斯滤波器可以更好地去除高频噪声,使图像更加清晰。 综上所述,巴特沃斯低通滤波是一种有效的图像处理方法,可以去除高频噪声,使图像更加清晰。在实验中,我们需要根据实际情况来选择合适的滤波器参数,以达到最佳的处理效果。 ### 回答2: 巴特沃斯低通滤波是一种常用的图像处理方法,用于去除图像中高频噪声,保留图像的低频细节。通过实验结果分析巴特沃斯低通滤波的效果,可以得出以下结论。 首先,实验结果显示,在不同的截止频率下,巴特沃斯低通滤波图像的平滑程度有所不同。当截止频率较低时,过滤效果明显,图像中的高频成分被削弱,整体细节变得模糊。而当截止频率逐渐增大时,图像的高频成分得到一定程度的保留,细节更加清晰。 其次,在巴特沃斯低通滤波中,阶数参数对滤波效果也有影响。较低的阶数使得滤波更为平滑,但会导致图像失真。随着阶数的增加,滤波的削弱程度加大,可以更好地抑制高频噪声,但也可能损失部分低频细节。 此外,实验结果还显示,巴特沃斯低通滤波图像的边缘信息具有一定的保护作用。在截止频率较低的情况下,滤波器能够较好地保留图像中的边缘信息,边缘线条更加清晰。然而,当截止频率增大时,一些较高频的边缘信息可能会被滤波掉,导致边缘模糊。 综上所述,巴特沃斯低通滤波实验结果分析表明,该滤波方法可以在去除图像高频噪声的同时保留一定的低频细节,但需在选择截止频率和阶数参数时进行权衡,以获得较好的滤波效果。 ### 回答3: 巴特沃斯低通滤波器是一种常用的图像处理滤波方法,用于在图像中去除高频噪声,使得图像变得更加清晰。通过实验的结果分析,可以得到以下结论。 首先,巴特沃斯低通滤波器具有可调节的参数,包括截止频率和滤波器阶数。在实验中,可以通过调节这些参数来改变滤波的效果。较高的截止频率可以保留图像中更多的高频细节,但也容易保留一些噪声;而较低的截止频率则可以更好地抑制噪声,但可能会导致图像模糊。 其次,在实验中可以观察到滤波后的图像与原始图像的差异。巴特沃斯低通滤波器可以有效地去除图像中的噪声,使得图像细节更加清晰。但是,如果选择的截止频率过低,滤波器可能会过度抑制高频信息,导致图像细节的丢失。因此,在使用巴特沃斯低通滤波器时,需要根据具体的图像情况选择合适的参数,以平衡噪声抑制和图像清晰度。 最后,巴特沃斯低通滤波器还可以应用于其他图像处理任务中。例如,在图像复原领域中,可以利用该滤波器去除图像中的运动模糊或模糊效果,提高图像的清晰度。此外,巴特沃斯低通滤波器还可以用于图像增强和特征提取等应用中,具有广泛的应用价值。 综上所述,通过巴特沃斯低通滤波实验的结果分析,可以得出巴特沃斯低通滤波器在图像处理中具有去噪、图像清晰度调节等优点,但在选择参数时需要注意平衡图像细节和噪声抑制的关系,并且该滤波器还可以应用于其他图像处理任务中。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值