书生·浦语大模型实战营第二期(第六课作业)

基础作业

使用 OpenCompass 评测 InternLM2-Chat-7B 模型在 C-Eval 数据集上的性能

面向GPU的环境安装


conda create --name opencompass --clone=/root/share/conda_envs/internlm-base
source activate opencompass
git clone https://github.com/open-compass/opencompass
cd opencompass
pip install -e .


数据准备


# 解压评测数据集到 data/ 处
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip /root/opencompass/OpenCompassData-core-20231110.zip
 # 将会在opencompass下看到data文件夹

查看支持的数据集和模型

# 列出所有跟 internlm 及 ceval 相关的配置
python tools/list_configs.py internlm ceval
  • 开始评测
  • python run.py --datasets ceval_gen --hf-path /share/temp/model_repos/internlm-chat-7b/ --tokenizer-path /share/temp/model_repos/internlm-chat-7b/ --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 2048 --max-out-len 16 --batch-size 4 --num-gpus 1 --debug
  • --datasets ceval_gen \
    --hf-path /share/temp/model_repos/internlm-chat-7b/ \  # HuggingFace 模型路径
    --tokenizer-path /share/temp/model_repos/internlm-chat-7b/ \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
    --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
    --model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
    --max-seq-len 2048 \  # 模型可以接受的最大序列长度
    --max-out-len 16 \  # 生成的最大 token 数
    --batch-size 2  \  # 批量大小
    --num-gpus 1  # 运行模型所需的 GPU 数量
    --debug

进阶作业

  • 使用 OpenCompass 评测 InternLM2-Chat-7B 模型使用 LMDeploy 0.2.0 部署后在 C-Eval 数据集上的性能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值