机器学习---决策树

在这里插入图片描述

1.决策树的构造:
优点: 计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。

缺点:可能产生过度匹配问题
适合数据类型: 数值型和标称型

2.决策树创建核心算法:

创建决策树的createTrees()函数


1.检测数据集每个子项是否属于同一类:
	     if so   : return 类标签
	     else:
	     			寻找划分数据集的最好特征
	     			划分数据集
	     			创建分支点
	     			for 每个划分的子集
	     			 		调用createTrees()函数并增加返回结果到分支节点中
	     return 分支节点

3.信息增益
信息增益用于表示数据集划分前后信息发生的变化。 x i 的 信 息 定 义 为 : l ( x i ) = − l o g 2 p ( x i ) x_{i}的信息定义为:l(x_{i})=-log_{2}p({x_{i}}) xil(xi)=log2p(xi) p ( x i ) 表 示 选 择 该 类 的 概 率 p({x_{i}})表示选择该类的概率 p(xi)

熵的定义为信息的期望值,所用类别可能包含的信息期望值:
H = ∑ i = 1 n p ( x i ) − l o g 2 p ( x i ) H= \sum_{i=1}^{n}p(x^{_{i}})-log_{2}p(x^{_{i}}) H=i=1np(xi)log2p(xi)

熵越高,数据很合越多。

# 决策树算法

import math
#小的数据集
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    featureNames = ['no surfacing','flippers'] #不浮出水面是否存活 ,有无脚蹼
    #change to discrete values
    return dataSet, featureNames

#计算信息熵,因为我们会利用最大信息增益的方法划分数据集-----看哪个特征划分使得,信息熵(数据无序度)减小的最多
def Entropy(dataSet):
    num = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: # 统计每个类别的数量
        currentLabel = featVec[-1] #最后1列为键
        if currentLabel not in labelCounts.keys(): 
            labelCounts[currentLabel] = 0 #初始值=0
        labelCounts[currentLabel] += 1 #统计+1
    entropy = 0.0
    for key in labelCounts:  #
        prob = float(labelCounts[key])/num
        entropy -= prob * math.log(prob,2) #log base 2
    return entropy

#测试一下
myDat,myFeatureNames = createDataSet()
print "the old dataset:\n",myDat

myEntropy = Entropy(myDat)
print "my test entropy should be 0.97095 :\n",myEntropy

#添加一类,mabey,yes,no   ====熵越高,表明数据越混乱
myDat[0][-1] = "mabey"
print "the new dataset:\n",myDat
myEntropy = Entropy(myDat)
print "my test entropy should be 1.37095 :\n",myEntropy
#
#the old dataset:
#[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
#my test entropy should be 0.97095 :
#0.970950594455
#the new dataset:
#[[1, 1, 'mabey'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
#my test entropy should be 1.37095 :
#1.37095059445
#根据数据集合,创建一个完整的决策树


#划分数据集


#按照给定的特征axis,根据他的取值value,划分数据集,返回新的数据集合,少了1个特征(划分依据的那个特征axis)

def splitDataSet(dataSet, axis, value):
    returnDataSet = []
    for dataVec in dataSet:
        if dataVec[axis] == value:
            tempVec = dataVec[:axis]     #0--(axis-1)
            tempVec.extend(dataVec[axis+1:]) #(axis+1)--(-1) #所以减去了axis
            returnDataSet.append(tempVec) 
    return returnDataSet
#测试一下
myDat,myFeatureNames = createDataSet()
print splitDataSet(myDat,0,1) #axis = 0,且这个特征的值=1
#[[1, 'yes'], [1, 'yes'], [0, 'no']]

#看哪个特征划分使得,信息熵(数据无序度)减小的最多

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #最后1列是类别
    baseEntropy = Entropy(dataSet)         #首先计算原始的信息熵
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #迭代所有的特征
        #将数据集中的第i个特征的值,放到一个list中
        featureList = [example[i] for example in dataSet]
        uniqueVal = set(featureList)       #用set去重
        newEntropy = 0.0
        for value in uniqueVal:  
            subDataSet = splitDataSet(dataSet, i, value)#对第i个特征,针对某个值划分
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * Entropy(subDataSet)   #累加信息熵  
        infoGain = baseEntropy - newEntropy     #计算这次划分的信息增益
        if (infoGain > bestInfoGain):       
            bestInfoGain = infoGain         #替换好的值
            bestFeature = i
    return bestFeature                      #return 最好的划分特征下标i
#测试
myDat,labels=createDataSet()
index = chooseBestFeatureToSplit(myDat)
print "best feature shoule be 0\n",index
#best feature shoule be 0


import operator

#对字典排序,取得最大值:将多数的类别标签作为“叶子节点”的类别
def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): 
            classCount[vote] = 0
            classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    #sorted(classCount.items(), key=lambda x:x[1], reverse=True) #对字典排序
    return sortedClassCount[0][0] #返回多数的那个类别




def createTree(dataSet,featureNames):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): #如果所有的类都一样,第0类的个数==长度
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList) #如果所有的特征都被遍历用于划分数据
    bestFeature = chooseBestFeatureToSplit(dataSet)
    bestFeatureName = featureNames[bestFeature]
    myTree = {bestFeatureName:{}} #用字典存储树结构
    del(featureNames[bestFeature]) #从特征名称列表中删除这个bestFeatureName
    featureValues = [example[bestFeature] for example in dataSet]  #遍历最好的特征的取值,进行划分
    uniqueVals = set(featureValues)
    for value in uniqueVals:
        subNames = featureNames #copy all of featureName, 为了保留原有的featureName不被函数修改
        myTree[bestFeatureName][value] = \
            createTree(splitDataSet(dataSet, bestFeature, value),subNames) #返回的是一个字典
    return myTree 

#测试一下 
myDat,myFeatureNames = createDataSet()
myTree = createTree(myDat,myFeatureNames)
print myTree
print myFeatureNames  #最后的list,会被改变(!!!因为函数参数是list,参数是按照引用的方式传递的)

#{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
[]

#测试算法:对于某个输入变量x,使用决策树,进行分类

def classify(inputTree,featureNames,testVec):
    firstKey = inputTree.keys()[0] #第一个key,根节点,k=某个特征a的名称
    secondDict = inputTree[firstKey] #第二个字典,key是特征a的所有取值
    featureIndex = featureNames.index(firstKey)
    key = testVec[featureIndex] 
    valueOfFeature = secondDict[key] #获得叶子节点的值,要么是“类别标签”,要么是key=某个特征b的“字典”
    if isinstance(valueOfFeature, dict): #判断实例是否是类型(tuple,dict,int,float) 
        classLabel = classify(valueOfFeature, featureNames, testVec) #是字典,继续递归
    else: classLabel = valueOfFeature #是类别标签,直接返回
    return classLabel
myDat,myFeatureNames = createDataSet()
 #因为myFeatureNames在函数中,改变了,所以重新加载
class0 = classify(myTree,myFeatureNames,[1 ,0])
print "[1,0] should be classify as 'no'\n",class0

class1 = classify(myTree,myFeatureNames,[1,1])
print "[1,1] should be classify as 'yes'\n",class1


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值