LR
1.为什么用sigmiod函数
(1)第一种解释:P代表1,1-P代表0,我们让p=1是ln(P/(1-P))趋于正无穷,让P=0时,趋于负无穷。
(2)用二分类的方法,对0是一个预测函数,对1是个预测函数,合在一起就是对某个预测值的预测函数。再用WX对这个预测值进行预测。
(3)sigmoid函数是伯努利分布的指数镞形式。
2.逻辑回归的多分类和二分类
第一种分类方式:
1.one-hot编码,label=1,2…k,假如label为3,则得到的向量为(0,0,1,…,0)
2.每个label对于的概率:
3.再把1,2结合。用极大似然的方法求解参数。
4.预测给一个新的x,得到那个label对于的P越大,则输出为这个label的值/
第二种分类方法:
把多分类看成多个二分类
3.多分类和二分类的关系
都是应用了交叉熵的损失函数的形式。交叉熵的形式为p(x)logq(x)
p(x)对应的y的分布
q(x)对应的着每个Label设置的分布。(2中的Pr)
把两个表达式子打开就是交叉熵的形式。
SVM
1.SVM中什么时候用线性核什么时候用高斯核?
线性核:feature 近似等于 样本的个数 。当数据的特征提取的较好,所包含的信息量足够大,很多问题是线性可分的那么可以采用线性核
高斯核:feature小。 用高斯核升维
RBF核:依赖特定点间的距离
多项式核:
选择不同的核:交叉验证