推荐算法介绍
礼拜天吃芋圆
这个作者很懒,什么都没留下…
展开
-
推荐算法(9) CTR预测
一、CTR介绍 在计算广告中,CTR是非常重要的一环。对于特征组合来说,业界通用的做法主要有两大类:FM系列和Tree系列。 在传统的线性模型中,每个特征都是独立的,如果需要考虑特征与特征之间的相互作用,可能需要人工对特征进行交叉组合。非线性SVM可以对特征进行核变换,但是在特征高度稀疏的情况下,并不能很好的进行学习。现在有很多分解模型可以学习到特征之间的交互隐藏关系,基本上每个模型都只适...原创 2019-07-18 17:31:14 · 2470 阅读 · 0 评论 -
推荐算法(8)评测指标
1.用户满意度(在线)用户满意度没有办法离线计算,只能通过用户调查或者在线实验获得。用户调查获得用户满意度主要是通过调查问卷的形式。2.预测准确度(离线)这个指标是最重要的推荐系统离线评测指标。2.1评分预测评分预测的预测准确度一般通过均方根误差(RMSE)和平均绝对误差(MAE)计算。对于测试集中的一个用户u和物品i,令rui是用户u对物品i的实际评分,而rui是推荐算法给出的预...原创 2019-06-05 16:26:42 · 17371 阅读 · 0 评论 -
推荐算法(7)缺失的评分预测问题
评分预测问题:就是user-item矩阵是一个稀疏的矩阵,我们要根据已知值来预测出未知项的值。评测标准:测试集的均分误差。训练集,测试集的划分:如果不和时间有关,就随机选;如果和时间有关就将最后10%作测试。评分预测算法:1.平均值1.1全局平均值1.2 用户评分平均值1.3物品评分平均值1.4用户分类对物品分类的平均值假设有两个分类函数,一个是用户分类函数ϕ ,一...原创 2019-06-04 16:33:42 · 4492 阅读 · 1 评论 -
推荐算法(6) 实例
一、推荐系统外围构架从用户日志经过推荐系统得到推荐列表,返回给UI界面;用户在UI界面,反馈,生成日志,最后储存起来。界面设置:1.展示物品2.物品有推荐理由3.提供按钮反馈数据收集和储存:针对不同的行为的特点,需要不同的存储方式。书中给了一个表格,列出了不同的用户行为采取的不同存储方法。实时存储的一般放在数据库和缓存中,大规模非实时数据存在分布式文件系统(HDFS)二、...原创 2019-06-03 20:49:12 · 4577 阅读 · 0 评论 -
推荐算法(5)利用社交网络数据
影响用户相信某个推荐结果的因素,90%的用户相信朋友对他们的推荐。基于社交网络的推荐可以很好的模拟现实社会。所以利用社交网络数据进行推荐可以增加用户对系统的信任度。另外利用用户在社交网络的数据可以解决冷启动问题。1.社交网络数据来源:1.电子邮件(联系人通信)2.用户注册信息(公司信息,居住信息)3.用户位置数据(网页IP和用户手机GPS;给定位置信息后,可以查表知道用户访问时的地址)2...原创 2019-06-01 13:59:36 · 5970 阅读 · 1 评论 -
推荐算法(4)利用上下文信息
上下文信息包括: 时间的上下文、地点的上下文、心情的上下文…一、时间的上下文1.理论1)时间上对用户的影响:1.用户自己的兴趣变化(随年龄,时间的变化,兴趣也在变化)2.物品有自己的生命周期(新闻、电影)3.季节效应(夏天喜好和冬天不同)给定时间侯推荐系统变成体个实时变化的系统,用户行文数据也变为时间序列。得到数据集是个三元组(u,i,t)2)系统需要的时间特性:1.数据集每天...原创 2019-05-31 14:28:36 · 3109 阅读 · 0 评论 -
推荐算法(3):利用用户标签数据
利用用户标签数据第一种CB第二种 UCF第三种 用户标签行为数据。就是人为的添加的标签,比如用户对看的一部电影打标签,写博客时作者给博客打的标签。标签分两种:一种是作者或者专家给商品打标签,一种是普通用户对商品打标签。后者被称为UGC。商品的内容信息和标签信息,都是特征。基于CF的推荐算法不用特征,只用用户行为。1.UGC代表应用:UGC标签系统的鼻祖Delicious,论文书签网站...原创 2019-05-23 16:14:16 · 6139 阅读 · 0 评论 -
推荐算法(2):基于内容的推荐
思路:根据用户过去喜欢的产品(本文统称为 item),为用户推荐和他过去喜欢的产品相似的产品流程:内容表征 Item Representation:为每个item抽取出一些特征(也就是item的content了)来表示此item;特征学习 Profile Learning:利用一个用户过去喜欢(及不喜欢)的item的特征数据,来学习出此用户的喜好特征(profile);生成推...原创 2019-05-21 19:28:23 · 2771 阅读 · 0 评论 -
冷处理
冷处理问题:1.用户冷处理2.物品冷处理3.系统冷处理:如何再一个新开发的网站上设计个性化推荐用户冷处理:解决方法:1.提供非个性化的推荐。为新注册用户推荐热门的商品,等用户数据搜集到一定程度后,切换到个性化推荐;2.利用用户注册时提供的年龄性别等数据做粗粒度的个性化;注册信息:(1).人口信息:年龄、性别、职业、民族、学历、居住地(2)用户兴趣(3)其他网站导入基于注册信...原创 2019-05-21 17:04:18 · 686 阅读 · 0 评论 -
Wide and Deep Learning(1)原理
部分转载于https://blog.csdn.net/sxf1061926959/article/details/78440220一、译文:摘要:通过将稀疏数据的非线性转化特征应用在广义线性模型中被广泛应用于大规模的回归和分类问题。通过广泛的使用交叉特征转化,使得特征交互的记忆性是有效的,并且具有可解释性,而然不得不做许多的特征工作。相对来说,通过从稀疏数据中学习低纬稠密embedding特...原创 2019-05-14 21:40:52 · 739 阅读 · 0 评论 -
推荐系统实践(四)LFM原理(1)
隐语义模型,矩阵分解方法:一、SVD分解1.存在两个严重的缺陷:(1)、SVD 分解前需要把稀疏矩阵填充成无缺失值的稠密矩阵,而数据集中往往 90%以上的数据都是缺失的,这样会造成数据存储空间成本大大增加;(2)、该算法的计算复杂度较高,对于填充后的稠密矩阵来说,计算速度变的更慢,甚至无法获得结果。2、算法流程:关键步骤:对特征值矩阵进行选择,一般从小到大排序,特征值大的代表着...原创 2019-05-17 17:06:54 · 1549 阅读 · 0 评论 -
推荐算法(1):协同过滤总结
协同过滤:(1)基于内容/基于领域的协同过滤ICF计算items之间的相似度,推荐与A的已知item最相关的item步骤:1.输入item-user矩阵2.求item-item相似度 (不同相似度度量:person系数、曼哈顿距离、余弦值、欧几里得距离)3.根据相似度求评分UCF计算user之间的相似度,推荐相似用户A的item给B。步骤:1.输入item-user矩阵2....原创 2019-05-17 17:18:39 · 7468 阅读 · 0 评论