作者:Odoo技术开发/资深信息化负责人
日期:2025年2月26日
一、为啥要用DeepSeek?
关务行业每天处理报关单、物流跟踪、税费计算这些高重复咨询。咱们用DeepSeek可实现:
- 7x24智能客服自动应答(比传统机器人更懂专业术语)
- 根据企业报关历史推荐最优方案(像海关版的"猜你喜欢")
- 自动解析政策文件(告别手动查红头文件)
二、技术架构三步走
- 基础层:接口访问上下文
# 在odoo自定义模块里新建deepseek_api.py
class DeepSeekClient:
def __init__(self):
self.client = OpenAI(
api_key=config['DEEPSEEK_KEY'], # 放odoo系统参数里
base_url="https://maas-api.lanyun.net/v1"
)
def ask(self, question):
# 这里加入关务知识库的上下文
messages = [{
"role": "system",
"content": "你是一位海关事务专家,擅长报关流程、税费计算..."
},{
"role": "user",
"content": question
}]
return self.client.chat.completions.create(...)
- 业务层:对接Odoo现有模块
- 网站模块:在"在线咨询"窗口嵌入智能应答
- CRM模块:根据客户历史报关记录推荐服务套餐
- 文档模块:自动生成报关材料清单
- 智能层:三大核心功能实现
# 示例:智能报关材料检查
def check_customs_docs(self, docs):
prompt = f"""
请根据2024年海关总署第XX号公告,检查以下材料:
1. 商业发票:{docs.invoice}
2. 装箱单:{docs.packing_list}
返回JSON格式:{"missing_fields":[], "advice":""}
"""
return self.ask(prompt)
# 个性推荐(藏在客户表单下面)
def _recommend_services(self):
history = self.env['customs.declaration'].search([...])
prompt = f"分析该客户近三年{history}报关记录,推荐..."
三、Odoo应用集成
- 创建custom_deepseek模块
- 继承res_partner模型添加推荐标记
- 在website模块添加聊天机器人widget
- 增加定时任务自动同步政策库
- 流式响应优化
# 在controllers.py处理网页流式响应
@http.route('/ai_chat', type='json', auth="public")
def chat_stream(self, question):
for chunk in deepseek.ask(question):
yield {
'content': chunk.content,
'thinking': chunk.reasoning_content # 显示思考过程更专业
}
四、业务价值算笔账
假设某报关行日均咨询300次:
- 人工客服5分钟/单 → AI 10秒响应 → 节省87%人力
- 通过智能推荐提升20%增值服务转化
- 政策更新响应速度从3天→实时
五、实施路线图
- 第一阶段(1个月):搭建问答引擎,覆盖50个常见问题
- 第二阶段(2个月):对接ERP数据实现个性化推荐
- 第三阶段(持续):构建行业知识图谱,准确率超95%
智能关务助手增强版
六、错误处理三板斧(系统稳定性的关键)
# 在deepseek_api.py增加防御机制
from tenacity import retry, stop_after_attempt, wait_exponential
import logging
class DeepSeekClient:
@retry(stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10))
def ask(self, question):
try:
# 原有代码...
except APIError as e:
logging.error(f"API异常 | 用户:{env.user.id} | 问题:{question} | 错误码:{e.code}")
return {"error": "系统正在升级,请稍后重试"}
except Timeout:
logging.warning("接口响应超时,启动降级服务")
return local_qa_service(question) # 切换到本地知识库
def local_qa_service(self, question):
"""应急响应策略"""
return self.env['ai.fallback'].search([('keyword','ilike',question)])
七、对话记录存储设计(审计与优化依据)
- 新建数据表(典型Odoo模型设计)
# models/ai_log.py
class AIChatLog(models.Model):
_name = 'ai.chat.log'
session_id = fields.Char('会话ID')
user_id = fields.Many2one('res.users')
question = fields.Text('原始问题')
raw_response = fields.Text('原始响应')
cleaned_response = fields.Text('清洗后内容')
cost_tokens = fields.Integer('消耗token')
timestamp = fields.Datetime(default=fields.Datetime.now)
metadata = fields.Json('扩展信息') # 存IP/设备/上下文等
- 存储时机(在接口层做埋点)
# controllers.py 修改流式处理
def chat_stream(self, question):
log_id = self.env['ai.chat.log'].create({
'user_id': request.uid,
'question': question,
'metadata': request.httprequest.headers.environ
})
full_response = []
for chunk in deepseek.ask(question):
if chunk.content:
full_response.append(chunk.content)
yield {...}
# 异步更新日志(避免阻塞流式响应)
self.env['ai.chat.log'].browse(log_id).write({
'raw_response': json.dumps(full_response),
'cost_tokens': calculate_tokens(full_response)
})
八、实战增强功能
- 敏感词过滤中间件
# 在消息进入队列前处理
blacklist = ['报关单号', '内部价', '特殊渠道']
def sanitize_input(text):
for word in blacklist:
text = text.replace(word, '***')
return text.strip()
- 会话连续性处理
# 取最近5条对话作为上下文
def get_chat_context(session_id):
return self.env['ai.chat.log'].search_read(
[('session_id','=',session_id)],
order='id desc',
limit=5
)
- 监控看板(集成到Odoo仪表盘)
-- 每日高频问题TOP10
SELECT question, COUNT(*)
FROM ai_chat_log
WHERE create_date >= current_date
GROUP BY question
ORDER BY 2 DESC
LIMIT 10
九、异常场景处理示例
- 突发流量控制
# 使用Odoo自带的并发控制
@http.route('/ai_chat', type='json', auth="public")
@serialized(max_concurrent=50) # 限制并发数
def chat_stream(self, question):
...
- 错误追溯方案
# 在日志中增加全链路追踪
logging.info(f"[TraceID:{uuid.uuid4()}] 用户:{user} 开始处理问题:{question[:20]}...")
十、数据安全锦囊
- 敏感字段加密存储
from cryptography.fernet import Fernet
class EncryptedField(models.Field):
def _encrypt(self, value):
return Fernet(key).encrypt(value.encode())
def _decrypt(self, value):
return Fernet(key).decrypt(value).decode()
升级后的方案就像给系统装上了行车记录仪和安全气囊。咱们在三个关键点做了加强:
- 错误防御:网络波动时自动切换本地知识库,就像车载备用电源
- 对话追溯:完整记录每轮对话的"心电图",方便后续分析优化
- 安全隔离:敏感信息自动打码,符合海关数据监管要求
需要特别注意的是日志存储策略,建议:
- 生产环境每天自动归档旧日志
- 敏感字段采用动态脱敏(如报关单号显示为4403*****)
- 定期清理测试数据(可以写个定时任务)
最后:上线策略
分批次上线,先做基础错误处理,再逐步增加审计功能。