Initially on a notepad only one character 'A' is present. You can perform two operations on this notepad for each step:
Copy All
: You can copy all the characters present on the notepad (partial copy is not allowed).Paste
: You can paste the characters which are copied last time.
Given a number n
. You have to get exactly n
'A' on the notepad by performing the minimum number of steps permitted. Output the minimum number of steps to get n
'A'.
Example 1:
Input: 3 Output: 3 Explanation: Intitally, we have one character 'A'. In step 1, we use Copy All operation. In step 2, we use Paste operation to get 'AA'. In step 3, we use Paste operation to get 'AAA'.
Note:
- The
n
will be in the range [1, 1000].
题目说给你一个初时的a
你只可以有两种操作
1.全选(不可以选部分)
2.复制
跟以前一样分析
dp【0】 = 0;
dp【1】 = 0;初时有1个
dp【2】 = 2;全选后复制
dp【3】 =3;全选-复制-复制
dp【4】= 4;可以全选复制-复制-复制也可以全选-复制-全选-复制但是如果方案1 我们就没有子问题 我们希望是方案二
。。。。。;来看一个大点的例子
dp【9】 =6(如果你不笨的话, 这里应该全选-复制-复制-全选-复制-复制 而前三步正好是dp【3】的步骤
接着我们分析
dp【11】=11;因为11是素数它没有共因子我们只能一路复制
看看
dp【121】=22;我们用dp【11】全选一次复制十次
这时我们得到的状态转移方程是
if( I %j ==0)
dp【i】=dp【j】+j;
else
dp【i】=i;
class Solution {
public:
int minSteps(int n) {
if(n<=0)return NULL;
if(n==1)return 0;
if(n==2)return 2;
int dp[n+1];
for(int i=0;i<=n;i++)
{
dp[i]=0;
}
dp[2]=2;
for(int i=3;i<=n;i++)
{
bool cando=true;
for(int j=2;j<i;j++)
{
if(i%j==0)
{
dp[i]=dp[i/j]+j;
cando=true;
break;
}
else
{
cando=false;
}
}
if(!cando)
{
dp[i]=i;
}
}
return dp[n];
}
};