LIS问题:最长递增子序列(Longest Increasing Subsequence);
LCS问题:最长公共子序列(Longest Common Subsequence);
子序列(subsequence)和子串(substring)的概念:子序列不要求连续,而子串必须由连续的字符组成。
LIS问题
时间复杂度:O(n^2);
空间复杂度:O(n);
设置一个DP数组,维护每个位置的符号作为结尾的最小的序列长度;
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int numsLen = nums.size();
vector<int> L(numsLen, 1);
for (int i = 1; i < numsLen; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i] && L[j] + 1 > L[i]) L[i] = L[j] + 1;
}
}
int maxLengthofSubsequence = 0;
for (int i = 0; i < numsLen; ++i) {
maxLengthofSubsequence = max(maxLengthofSubsequence, L[i]);
}
return maxLengthofSubsequence;
}
};
LCS问题
LCS问题中因为会面临着子串长度不同的问题,所以需要使用一个二维DP数组。
时间复杂度:O(m * n);
空间复杂度:O(m * n);
m和n分别是字符串text1和字符串text2的长度。
// 经典二维DP
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int text1Len = text1.length(), text2Len = text2.length();
vector<vector<int>> dp(text1Len + 1, vector<int>(text2Len + 1)); // 建立二维DP数组
for (int i = 0; i <= text2Len; ++i) { // 初始化DP的数组的初始条件
dp[0][i] = 0;
}
for (int i = 0; i <= text1Len; ++i) {
dp[i][0] = 0;
}
int maxLCSLen = 0;
for (int i = 1; i <= text1Len; ++i) { // 自底向上DP
for (int j = 1; j <= text2Len; ++j) {
if (text1[i - 1] == text2[j - 1]) dp[i][j] = 1 + dp[i - 1][j - 1]; // 分两种情况,一种是最后一个字符相等,一种是最后一个字符不相等
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
maxLCSLen = max(maxLCSLen, dp[i][j]);
}
}
return maxLCSLen;
}
};