统计笔记3:statistical inference

统计推断(statistical inference)包含括两类工作:参数估计和假设检验

一、参数估计Parameter Estimation

1、Ponit Estimation点估计:用一个具体的值来估计总体的未知参数

矩估计法Moment Estimation

矩:一个变量X的k次方的均值

2、Interval Estimation区间估计:考虑了估计存在的误差,因而不是使用一个具体的值,而是一个置信区间(Confidence Interval),区间估计的可信程度成为置信度或者置信水平(Confidence Level)

1-\alpha表示,意思就是真实值有1-\alpha的可能性落在置信区间内部,有\alpha的可能性落在置信区间之外。

interval(alpha, df, loc, scale)

alpha为置信水平,df是检验量的自由度,loc是样本均值,scale为标准差(注意这里是样本平均值的标准误差stats.sem())

from scipy import stats
import numpy as np

# 构造样本x
x = [10.1, 10, 9.8, 10.5, 9.7, 10.1, 10.3, 9.9]

# 进行区间估计
stats.t.interval(0.95, len(x)-1, np.mean(x), stats.sem(x))

二、假设检验Hypothesis Testing

原理略过,上代码

1、t检验(t Test)

总体均值已知,检验单个变量的均值和目标值之间是否存在差异

单样本t检验(One sample t Test)

比较总体均值和指定的检验值之间是否存在差异

result = stats.ttest_1samp(SHRet,0)  # 检验上证指数的收益率均值是否为0

配对样本t检验(Paired Sample t Test)

当两个样本并不互相独立时,我们可以使用配对样本t检验对两个总体的均值差异进行检验

result = stats.ttest_rel(SHRet, SZRet)  # 检验上证指数和深成指收益率均值是否相等

独立样本t检验(Independent Samples t Test)

检验两个服从正态分布的总体均值是否存在显著差异

result = stats.ttest_ind(SHRet, SZRet)  # 检验上证指数和深成指收益率均值是否相等

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值