机器学习
文章平均质量分 80
读书笔记、论文总结、项目及课程代码
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
GUI Research Group
机器学习, 生物信息
展开
-
pytorch图机器学习(part1)--入门案例
pytorch图机器学习原创 2022-12-18 15:38:27 · 485 阅读 · 0 评论 -
生信文献记录(part6)--Iterative transfer learning with neural network for... in scRNA-seq analysis
聚类和细胞类型分类是单细胞RNA-seq(scRNA-seq)分析的重要步骤。随着越来越多的scRNA-seq数据的出现,利用外部良好注释的源数据的监督细胞类型分类方法开始比无监督聚类算法更受欢迎;然而,现有的监督方法的性能高度依赖于源数据的质量,它们对源数据中缺失的细胞类型分类的准确性往往有限。我们开发了ItClust来克服这些限制,这是一种迁移学习算法,借鉴了监督细胞类型分类算法的思路,但也利用了目标数据中的信息,以确保对只存在于目标数据中的细胞进行分类的敏感性。原创 2022-12-09 11:40:35 · 448 阅读 · 0 评论 -
生信文献记录(part7)--Clustering single-cell RNA-seq data with a model-based deep learning approach
单细胞RNA测序(scRNA-seq)有望提供比bulk RNA测序更高的细胞差异分辨率。通过scRNA-seq分析的转录组聚类已被常规化,以揭示细胞的异质性和多样性。然而,scRNA-seq数据的聚类分析仍然是一个统计和计算方面的挑战,因为普遍存在的drop-out事件使数据矩阵被普遍的 "虚假 "零计数观测所掩盖。在此,我们开发了scDeepCluster,一种基于单细胞模型的深度嵌入式聚类方法,它通过对scRNA-seq数据生成的明确建模,同时学习特征表示和聚类方法。基于对原创 2022-12-09 10:40:39 · 131 阅读 · 0 评论 -
文献学习(partX)--A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions
聚类是一项基本的机器学习任务,在文献中已经被广泛研究. 经典的聚类方法遵循的假设是,通过各种表征学习技术,将数据以矢量的形式表示为特征. 随着数据变得越来越复杂,浅层(传统)聚类方法已经无法处理高维数据类型. 随着深度学习的巨大成功,特别是深度无监督学习,在过去的十年中,许多具有深度架构的表示学习技术被提出. 一个直接的方法是先学习深度表征,然后再将其输入浅层聚类方法。原创 2022-12-08 21:06:48 · 110 阅读 · 0 评论 -
文献学习(part104)--A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning
现在,深度学习是一个current和stimulating的机器学习领域。深度学习是最有效的、有监督的、有时间和成本效益的机器学习方法。深度学习不是一种限制性的学习方法,但它遵守各种程序和拓扑结构,可以应用于巨大的复杂问题的样本。该技术以一种非常分层的方式学习illustrative 和 differential特征. 深度学习方法已经取得了重大突破,在各种应用中都有不错的表现,并具有有用的安全工具。它被认为是通过采用反向传播算法发现高维数据中复杂结构的最佳选择。由于深度学习在众原创 2022-12-06 10:37:07 · 392 阅读 · 1 评论 -
文献学习(part103)--Inductive Representation Learning on Large Graphs
大图中节点的低维嵌入已被证明在各种预测任务中非常有用,从内容推荐到识别蛋白质功能. 然而,大多数现有的方法要求在训练嵌入时图中的所有节点都存在;这些以前的方法本质上是归纳性的,不能自然地推广到未见过的节点. 在这里,我们提出了GraphSAGE,这是一个通用的归纳框架,利用节点特征信息(如文本属性)来为以前未见过的数据有效地生成节点嵌入。我们不是为每个节点训练单独的嵌入,而是学习一个函数,通过从节点的本地邻域采样和聚合特征来生成嵌入。原创 2022-11-30 16:06:29 · 892 阅读 · 0 评论 -
Machine Learning with Graphs
学习笔记,仅供参考,有错必纠。原创 2022-11-29 19:59:11 · 511 阅读 · 0 评论 -
书籍学习|New Developments in Unsupervised Outlier Detection(part1)
最近,离群点检测作为数据挖掘的一个研究领域有了很大的进展。大量的数据挖掘技术已经被开发出来,对无监督的离群点检测领域产生了影响。我们写这本书的目的是为那些对探索这一迷人领域感兴趣的人提供一个友好而全面的指南。换句话说,本书的目的是提供方便的途径来了解最近对无监督离群检测理论的贡献,评估其对该领域的影响及其对理论和实践的影响。原创 2022-10-19 10:23:40 · 494 阅读 · 0 评论 -
书籍学习|Supervised and Unsupervised Learning for Data Science(part1)
监督和无监督学习算法在从大数据集获取知识方面显示出巨大的潜力。原创 2022-10-19 10:13:16 · 395 阅读 · 0 评论 -
书籍学习|Unsupervised Learning Algorithms(part1)
随着大量无标签数据的激增,无监督学习算法--可以自动发现这些数据中有趣和有用的模式--在研究人员和从业人员中得到了普及。这些算法已经发现了许多应用,包括模式识别、市场篮子分析、网络挖掘、社会网络分析、信息检索、推荐系统、市场研究、入侵检测和欺诈检测。在过去的半个世纪里,由于难以开发出理论上合理的、可用于客观评价的方法,因此许多无监督学习算法被提出。原创 2022-10-19 09:49:06 · 495 阅读 · 0 评论 -
书籍学习|Unsupervised Feature Extraction Applied to Bioinformatics(part1)
这是一本关于非常经典的数学技术的书:主成分分析和张量分解.原创 2022-10-18 23:56:38 · 369 阅读 · 0 评论 -
书籍学习|Advances in Bioinformatics(part1)
生物信息学是一个迅速发展的生物学领域,并获得了重大的科学和公众关注。它目前被用于生物科学研究的所有领域,并加速了研究工作。它结合了生物学、计算机科学、信息技术、数学和统计学的原理来分析和解释生物数据。原创 2022-10-18 19:30:48 · 414 阅读 · 0 评论 -
书籍学习|Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques(part1)
生物信息学是一个多方面的领域,涉及生物数据的计算方法、技术和软件工具的发展。为了更好地理解和分析生物数据,生物信息学将计算机科学、自然科学和数学领域结合起来。它涉及到生物数据的收集、建模、信息处理分析和可视化,并反过来帮助创建新的算法和工具。原创 2022-10-18 18:56:32 · 344 阅读 · 0 评论 -
书籍学习|Generalized Principal Component Analysis(part1)--Preface
本书全面介绍了从一个或多个低维子空间(或流形)中提取并可能被噪声、严重错误或异常值破坏的高维数据建模的数学理论和计算工具的最新进展。原创 2022-10-18 09:28:17 · 446 阅读 · 0 评论 -
生信文献记录(part5)--Application of Sparse Representation in Bioinformatics
受L1-norm最小化方法的启发,如基数追寻、压缩传感和Lasso特征选择,近年来,稀疏表示作为一种新颖而有效的数据处理方法出现,并显示出强大的优越性. 研究人员不仅将信号的稀疏表示扩展到图像表现,而且还将向量的稀疏性应用于矩阵的稀疏性. 此外,稀疏表示还被应用于模式识别,并取得了良好的效果. 由于稀疏表示具有多种优点,如对噪声不敏感、鲁棒性强、对选定的特征不太敏感、没有 "过拟合 "现象等。原创 2022-10-16 17:17:31 · 378 阅读 · 0 评论 -
生信文献记录(part4)--Ensemble deep learning in bioinformatics
Ensemble方法和深度学习模型的显著灵活性和适应性导致了它们在生物信息学研究中的应用激增. 传统上,这两种机器学习技术在生物信息学应用中基本上被当作独立的方法论. 然而,最近出现的Ensemble深度学习–其中两种机器学习技术被结合起来以实现模型准确性、稳定性和可重复性的协同改进–促使了新一轮的研究和应用. 在这里,我们分享了最近ensemble深度学习的主要发展,并看看他们的贡献是如何使从基础序列分析到系统生物学的广泛的生物信息学研究受益.原创 2022-10-15 20:14:15 · 550 阅读 · 0 评论 -
生信文献记录(part3)--Statistical power for cluster analysis
聚类算法在生物医学研究中越来越受欢迎,因为它们具有识别数据中离散子群的能力,而且在主流软件中越来越容易获得。虽然存在算法选择和结果评估的指南,但没有牢固确立的方法来计算聚类分析的先验统计能力。在这里,我们通过模拟来估计常见分析功能的性能和分类精度。我们系统地改变了子组的大小、数量、分离(效应大小)和协方差结构。然后,我们对生成的数据集进行降维处理(无,多维缩放,或统一流形近似和投影)和聚类(K-means,带有Ward或平均联系和欧氏或余弦距离的聚类分级,HDBSCAN)。原创 2022-10-12 22:41:13 · 438 阅读 · 0 评论 -
生信文献记录(part2)--Deep learning-based clustering approaches for bioinformatics
聚类是许多数据驱动的生物信息学研究的核心,是一种强大的计算方法。特别是,聚类有助于分析序列、表达、文本和图像等形式的非结构化和高维数据。此外,聚类被用来深入了解基因组学层面的生物过程,例如,基因表达的聚类可以深入了解数据中固有的自然结构,了解基因功能、细胞过程、细胞亚型和了解基因调节。原创 2022-10-11 17:00:36 · 507 阅读 · 0 评论 -
文献学习(part102-A)--Autoencoders
自编码器是神经网络的一种特殊类型,它主要被设计为将输入编码为一种压缩的、有意义的表示,然后再将其解码,使重建的输入尽可能地与原始输入相似. 本文调查了当今主要使用的不同类型的自编码器. 它还描述了自编码器的各种应用和使用情况.原创 2022-09-25 16:35:24 · 360 阅读 · 0 评论 -
文献学习(part100-C)--An Introduction to Autoencoders
学习笔记,仅供参考,有错必纠原创 2022-09-23 19:07:46 · 437 阅读 · 0 评论 -
文献学习(part100-B)--An Introduction to Autoencoders
学习笔记,仅供参考,有错必纠原创 2022-09-22 21:16:24 · 291 阅读 · 0 评论 -
深度学习(part9)--使用CNN完成MNIST手写体识别
代码笔记,仅供参考,有错必究。原创 2022-08-17 20:48:56 · 406 阅读 · 0 评论 -
深度学习(part8)--CNN卷积神经网络
学习笔记,仅供参考,有错必究;原创 2022-08-17 19:35:19 · 700 阅读 · 0 评论 -
深度学习(part7)--Keras常用模块
学习笔记,仅供参考,有错必究原创 2022-08-17 12:02:01 · 401 阅读 · 0 评论 -
深度学习(part6)--使用keras搭建神经网络
学习笔记,仅供参考,有错必究。原创 2022-08-16 23:35:45 · 193 阅读 · 0 评论 -
深度学习(part5)--深度学习框架Keras
学习笔记,仅供参考,有错必纠。原创 2022-08-16 21:39:25 · 399 阅读 · 0 评论 -
深度学习(part4)--使用tensorflow构建神经网络
代码笔记,仅供参考,有错必纠原创 2022-08-16 16:20:40 · 292 阅读 · 0 评论 -
深度学习(part3)--深度学习框架tensorflow
深度学习框架tensorflow简介.原创 2022-08-16 15:19:31 · 369 阅读 · 0 评论 -
深度学习(part2)--机器学习及深度学习基础
学习笔记,仅供参考,有错必纠文章目录深度学习机器学习概述机器学习常用框架--scikit-learn特征处理深度学习原理单感知机多层感知机网络训练过程常见激活函数常见损失函数梯度下降深度学习中的3个概念深度学习机器学习概述机器学习常用框架–scikit-learnscikit-learn算法地图scikit-learn常用APIsklearn.base:所有估算器的基类;sklearn.calibration:预测概率的校验;sklearn.cluster:该模块包含了流行原创 2021-12-04 13:20:08 · 994 阅读 · 0 评论 -
深度学习(part1)--机器学习开发流程
学习笔记,仅供参考,有错必纠。原创 2022-08-14 23:47:41 · 300 阅读 · 0 评论 -
文献学习(part101)--CONVEX BICLUSTERING
在双聚群问题中,我们寻求同时对**观察结果**和**特征**进行分组。虽然聚簇在从文本挖掘到协同过滤的广泛领域都有应用,但在高维基因组数据中识别结构的问题激发了这项工作。在这种情况下,双聚簇使我们能够识别仅在实验条件子集内共同表达的基因子集。我们给出了双聚类问题的**凸公式**(目标函数为凸),它具有**唯一的全局最小值**和一个保证识别它的迭代算法`COBRA`。......原创 2022-07-24 16:39:45 · 511 阅读 · 0 评论 -
机器学习理论及案例分析(part2)--回归
回归是对一个或多个自变量和因变量之间的关系进行建模,求解的一种统计方法。早在大学的统计学课本上,我们就学习过回归,回归模型看似简单,但确是最重要的数学模型之一,很多模型都是在它的基础上建立的,任何一个复杂模型,其内部可能隐藏着许许多多回归模型。.........原创 2022-07-24 15:43:03 · 765 阅读 · 0 评论 -
机器学习理论及案例分析(part1)--机器学习基础
占地原创 2022-07-24 15:26:52 · 340 阅读 · 0 评论 -
文献学习(part100-A)--An Introduction to Autoencoders
在这篇文章中,我们将研究自编码器(autoencoders).这篇文章涵盖了自编码器的数学和基本概念.我们将讨论它whattheyare,whatthelimitationsare,thetypicalusecases,以及wewilllookatsomeexamples.我们将从自编码器的一般介绍开始,讨论输出层的激活函数和损失函数的作用.然后我们将讨论什么是重建误差.最后,我们将看一下典型的应用,如降维、分类、去噪和异常检测.............原创 2022-07-23 11:46:58 · 357 阅读 · 0 评论 -
文献记录(part109)--Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces
从无标签的数据集中寻找一小部分代表是数据集总结和信息提取等广泛应用中的一个核心问题.经典的exemplar selection methods,如k-medoids,是在数据点接近几个聚类中心点的假设下工作的,而不能处理数据接近union of subspaces的情况.本文提出了一个新的exemplar selection model,该模型寻找一个子集,该子集以表示系数的l1l_1l1。...原创 2022-07-22 00:25:26 · 516 阅读 · 0 评论 -
文献记录(part108)--Distributionally Robust and Multi-Objective Nonnegative Matrix Factorization
非负矩阵分解 (NMF) 是一种用于分析非负数据的线性降维技术. NMF 的关键是目标函数的选择,该目标函数取决于对数据假设的噪声模型(or statistics of the noise). 在许多应用中,噪声模型是未知且难以估计的. 在本文中,我们定义了一个多目标 NMF (MO-NMF) 问题,其中多个目标组合在同一个 NMF 模型中. 我们建议使用拉格朗日对偶性,在加权和方法的框架内,明智地优化一组权重,即我们最小化一个单一的目标函数...原创 2022-07-20 23:24:31 · 235 阅读 · 0 评论 -
单细胞论文记录(part18)--Spectral clustering based on learning similarity matrix
Motivation单细胞RNA测序(scRNA-seq)技术可以在单细胞水平上产生全基因组表达数据.scRNA-seq分析的一个重要目标是对细胞进行聚类,每个聚类由属于同一细胞类型的细胞组成,基于基因表达模式.Results我们引入了一个新的谱聚类框架,对目标矩阵施加稀疏结构.具体来说,我们利用多个双随机相似性矩阵来学习相似性矩阵,其动机是观察到每个相似性矩阵可以是数据的不同信息表示.我们在目标矩阵上.我们使用ADMM算法迭代地解决所提出的非凸问题。...原创 2022-07-20 16:00:01 · 263 阅读 · 0 评论 -
文献记录(part107)--Detecting Meaningful Clusters From High-Dimensional Data ...
在高维聚类的背景下,特征加权的概念在过去几年中得到了相当大的重视,以掌握不同特征在揭示数据集聚类结构中的相对重要程度.然而,该领域流行的技术要么不能进行特征选择,要么没有保留Lloyd启发式解决k-means问题的简单性.在本文中,我们提出了LassoWeightedk-means(LW-k-means)算法,作为一种简单而高效的稀疏聚类,适用于特征数(p)可能远远高于观测数(n)的高维数据.LW-k-means方法施加了一个涉及特征权重的l1l_1l1正则化项,直接在稀疏聚类框架中。...原创 2022-07-17 11:56:05 · 379 阅读 · 0 评论 -
文献学习(part99)--Fast unfolding of communities in large networks
我们提出了一种简单的方法来提取大型网络的社群结构.我们的方法是一种基于模块化优化的启发式方法.该方法在计算时间上优于所有其他已知的社群检测方法.此外,检测到的社区的质量非常好,以所谓的模块化来衡量.首先,通过识别比利时260万客户的移动电话网络中的语言社区和分析1.18亿个节点和超过10亿个链接的网络图来证明.我们的算法的准确性也在ad-hoc模块化网络上得到了验证....原创 2022-07-15 11:29:30 · 225 阅读 · 0 评论 -
论文实验记录(part1)--Detection ofnatural clusters via S-DBSCAN a Self-tuning version of DBSCAN
学习笔记,仅供参考,有错必纠Journal:Knowledge-Based SystemsYear:2022Keywords:Clustering,Natural cluster,Distance,Density,NeighborsDetection ofnatural clusters via S-DBSCAN a Self-tuning version of DBSCANabstract基于密度的聚类算法对广泛的应用领域产生了巨大的影响. 随着数据种类和数量增多,其规模和各种内部组织不断上原创 2022-05-28 18:36:10 · 177 阅读 · 0 评论