K - TV Show Game(2_sat)

题意:n个数,每个2种情况,m组,每组中至少满足2个。

2-sat

    #include <bits/stdc++.h>
    using namespace std;
    const int MOD = int(1e9 + 7);
    const int MAX = 2e4 + 5, MAXE = 3e6 + 5;
    
    int n;
    int head[MAX], nxt[MAXE], to[MAXE];
    int edgeCount;
    
    
    void addEdge(int f, int t) {
        nxt[edgeCount] = head[f];
        head[f] = edgeCount;
        to[edgeCount++] = t;
    }
    
    int low[MAX], dfn[MAX], index;
    int stk[MAX], stksz;
    int compId[MAX], compnum;
    
    void tarjanDFS(int cur) {
        low[cur] = dfn[cur] = index++;
        stk[stksz++] = cur;
        for (int i = head[cur]; i != -1; i = nxt[i]) {
            int j = to[i];
            if (compId[j] == -1) {
                if (dfn[j] == -1)
                    tarjanDFS(j);
                low[cur] = min(low[cur], low[j]);
            }
        }
        if (low[cur] == dfn[cur]) {
            do {
                compId[stk[stksz - 1]] = compnum;
            } while (stk[--stksz] != cur);
            compnum++;
        }
    }
    
    void SCC() {
        compnum = 0;
        index = 0;
        memset(compId, -1, sizeof(compId));
        memset(dfn, -1, sizeof(dfn));
        for (int i = 0; i < n; i++) {
            if (dfn[i] == -1)
                tarjanDFS(i);
        }
    }
    
    
    int NOT(int cur) {
        return cur ^ 1;
    }
    
    void addOR(int i, int j) {
        addEdge(NOT(i), j);
        addEdge(NOT(j), i);
    }
    
    int invComp[MAX], sortedOrder[MAX], in[MAX], sorSize;
    vector<vector<int>> adjComp;
    int compres[MAX], visComp[MAX];
    
    void dfs(int u) {
        if (visComp[u])return;
        visComp[u] = true;
        for (int nxt : adjComp[u]) {
            dfs(nxt);
        }
        if (compres[u] == -1) {
            compres[u] = 1;
            int invID = invComp[u];
            compres[invID] = 0;
        }
    }
    
    void assign() {
        memset(compres,-1,sizeof(compres));
        memset(in,0,sizeof(in));
        sorSize = 0;
        for(int i=0;i<(int)adjComp.size();i++)
        for(int k=0;k<(int)adjComp[i].size();k++)
            in[adjComp[i][k]]++;
        for(int i=0;i<(int)adjComp.size();i++)
            if (!in[i])
                dfs(i);
    }
    
    
    bool _2sat() {
        SCC();
        for(int i=0;i<n/2;i++)
        {
            if (compId[i*2] == compId[NOT(i*2)])
                return false;
            invComp[compId[i*2]] = compId[NOT(i*2)];
            invComp[compId[NOT(i*2)]] = compId[i*2];
        }
        adjComp.clear(), adjComp.resize(compnum);
        for(int ii=0;ii<n;ii++) {
            for (int kk = head[ii]; kk != -1; kk = nxt[kk]) {
                int jj = to[kk];
                int i = compId[ii], j = compId[jj];
                if (i == j)
                    continue;
                adjComp[i].push_back(j);
            }
        }
        assign();
        return true;
    }
    
    string ans;
    pair<int, char> arr[MAX][3];
    
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(nullptr);
        edgeCount = 0;
        memset(head, -1, sizeof(head));
        
        int k;
        scanf("%d%d", &n, &k);
        for (int i = 0; i < k; i++) {
            for (int j = 0; j < 3; j++) {
                scanf(" %d %c", &arr[i][j].first, &arr[i][j].second);
                arr[i][j].first--;
                for (int k = 0; k < j; k++) {
                    int a = arr[i][j].first*2;
                    if (arr[i][j].second == 'B') a = NOT(a);
                    int b = arr[i][k].first*2;
                    if (arr[i][k].second == 'B') b = NOT(b);
                    addOR(a, b);
                }
            }
        }
        n <<= 1;
        if (!_2sat()) {
            cout << -1 << "\n";
        }
        else {
            n >>= 1;
            for (int i = 0; i < n; i++) {
                int ii = compId[i*2];
                bool flag = compres[ii];
                if (flag)ans += 'R';
                else ans += 'B';
                printf("%c", flag ? 'R' : 'B');
            }
            printf("\n");
        }
    
        return 0;
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值