[论文] Aspect Based Sentiment Analysis with Gated Convolutional Networks

本文提出了一种基于门控卷积网络的模型,用于方面情感分析(ABSA),包括方面类别情感分析(ACSA)和方面术语情感分析(ATSA)。与依赖LSTM和注意力机制的方法相比,该模型更精确且训练时间更短。在SemEval数据集上进行实验,证明了其效率和准确性。模型采用两个卷积层和新颖的门控单元,能有效提取与方面相关的特征,进行情感预测。
摘要由CSDN通过智能技术生成

Aspect Based Sentiment Analysis with Gated Convolutional Networks

 

摘要:

Aspect based sentiment analysis (ABSA)

two subtasks:

aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA)

 

大多数先前的方法采用长期短期记忆和注意机制来预测相关目标的情绪极性,这通常是复杂的并且需要更多的训练时间。我们提出了一种基于卷积神经网络和门控机制的模型,该模型更加准确和高效。

 数据集:SemEval

 

介绍:

ABSA不是预测整体情绪极性。具体而言,对文本中方面类别或目标实体的情感极性感兴趣。

The goal of ACSA is to predict the sentiment polarity with regard to the given aspect, which is one of a few predefined categories. On the other hand, the goal of ATSA is to

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值