Aspect Based Sentiment Analysis with Gated Convolutional Networks
摘要:
Aspect based sentiment analysis (ABSA)
two subtasks:
aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA)
大多数先前的方法采用长期短期记忆和注意机制来预测相关目标的情绪极性,这通常是复杂的并且需要更多的训练时间。我们提出了一种基于卷积神经网络和门控机制的模型,该模型更加准确和高效。
数据集:SemEval
介绍:
ABSA不是预测整体情绪极性。具体而言,对文本中方面类别或目标实体的情感极性感兴趣。
The goal of ACSA is to predict the sentiment polarity with regard to the given aspect, which is one of a few predefined categories. On the other hand, the goal of ATSA is to

本文提出了一种基于门控卷积网络的模型,用于方面情感分析(ABSA),包括方面类别情感分析(ACSA)和方面术语情感分析(ATSA)。与依赖LSTM和注意力机制的方法相比,该模型更精确且训练时间更短。在SemEval数据集上进行实验,证明了其效率和准确性。模型采用两个卷积层和新颖的门控单元,能有效提取与方面相关的特征,进行情感预测。
最低0.47元/天 解锁文章
393

被折叠的 条评论
为什么被折叠?



