- 博客(6)
- 资源 (2)
- 收藏
- 关注
原创 基于Keras的深度学习(二)——LeNet的搭建与训练
这里写自定义目录标题基于Keras的深度学习(二)——LeNet的搭建与训练Keras功能介绍1.卷积2.激活函数3.池化4.Flatten5.全连接层搭建LeNet1.模型的搭建2.数据获取及预处理3.训练4.评估模型基于Keras的深度学习(二)——LeNet的搭建与训练LeNet是一种用于手写体字符识别的非常高效的卷积神经网络。网络虽然很小,但是它包含了深度学习的基本模块:卷积层,池化层,全连接层。也是其他深度学习模型的基础。关于LeNet的介绍可以参考链接:LeNet我们一边看LeNet,一
2021-04-24 11:14:32 736
原创 AttributeError: module ‘keras.backend‘ has no attribute ‘set_image_dim_ordering‘
@[TOC] AttributeError: module 'keras.backend' has no attribute 'set_image_dim_ordering'# K.set_image_dim_ordering("th"),用于在如何表示彩色图片的问题上,即Theano模式会把100张RGB三通道的16×32(高为16宽为32)彩色图表示为下面这种形式(100,3,16,32),Caffe采取的也是这种方式。# 而TensorFlow,即'tf'模式的表达形式是(100,16,32
2021-04-22 17:17:23 1751 1
原创 基于Keras的深度学习(一)——第一个简单的例子:手写数字识别
让我们开始用Keras搭建一个简单的神经网络吧,先让它跑起来。使用的MNIST数据集,可通过代码直接下载。但是我在下载的时候出现了一些问题,如果你也遇到了下载问题,那么直接复制地址直接去网页下载,再读进来就好了。from __future__ import print_functionimport numpy as npfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras....
2021-04-22 14:21:29 274 1
转载 OpenCV+Python形态学
作者:Daetalus 来源:CSDN 原文:https://blog.csdn.net/sunny2038/article/details/9137759 版权声明:本文为博主原创文章,转载请附上博文链接! 定义结构元素形态学处理的核心就是定义结构元素,在OpenCV-Python中,可以使用其自带的getStructuringElement函数,也可以直接使用NumPy...
2018-12-14 19:58:22 388
转载 cv2.morphologyEx()
openvc中morphologyEx()函数是一种形态学变化函数。数学形态学可以理解为一种滤波行为,因此也称为形态学滤波。滤波中用到的滤波器(kernal),在形态学中称为结构元素。结构元素往往是由一个特殊的形状构成,如线条、矩形、圆等。 开运算(open):先腐蚀后膨胀的过程。开运算可以用来消除小黑点,在纤细点处分离物体、平滑较大物体的边界的 同时并不明显改变其面积。 闭运算...
2018-12-14 19:41:44 18230
转载 cv2.getStructuringElement( )
这个函数的第一个参数表示内核的形状,有三种形状可以选择。矩形:MORPH_RECT;交叉形:MORPH_CROSS;椭圆形:MORPH_ELLIPSE;第二和第三个参数分别是内核的尺寸以及锚点的位置。一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值: 对于锚点的位置,有默认值Point(-1,-...
2018-12-14 19:40:44 26858
FlaskDownloadUpload.zip
2021-03-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人