压缩感知相关知识笔记
1.稀疏基:某种正交变换的变换矩阵列向量组成的基。
2.归一化:归一化是将样本的特征值转换到同一量纲下把数据映射到[0,1]或者[-1, 1]区间内。
3.离散傅里叶变换:通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。
4.离散余弦变换:离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。是展开成仅含有余弦项的傅里叶级数。
5.OMP算法:正交匹配追踪(OMP)算法是一种常用的贪婪追踪 算法,它的基本思想是:采用贪婪迭代的方法来达到 原子选择和残差更新的目的,在每次迭代中对已选原 子集合进行正交化处理,并计算求得观测矩阵Φ 与当 前残差的相关性,找出最相关的原子用最小二乘法进 行信号的稀疏逼近,求出残差,再重复之前的操作, 完成 K 次迭代, 其中迭代的次数就为信号的稀疏度 K。 OMP 算法能够以极高的概率重构原始信号, 但该算法 实现的前提条件是所需信号的稀疏度必须是已知的, 若能够精准地确定信号的稀疏度,则采用 OMP 算法 重构原始信号是非常快速和有效的, 而在实际情况中, 信号经压缩传输后其