题目描述
思路
题目要求用二叉树的前序序列和后序序列构造二叉树,利用前序遍历的后续遍历构造二叉树时,只有这棵树中没有度为1的节点时,才能唯一的确定这棵树,这是因为当存在度为1的节点时,只能确定它的所有子孙节点,但不能确定这些节点属于左子树还是右子树。
题目中只要求求出任意一种符合条件的二叉树,故在构造二叉树的过程中,不妨每次遇到度为1的节点都把其子孙节点连接到其左子树上。代码中当rchild_n==0时,即为这种情况。
代码
class Solution {
public:
TreeNode* constructFromPrePost(vector<int>& pre, vector<int>& post) {
int len=pre.size();
return construct(pre,0,len-1,post,0,len-1);
}
TreeNode* construct(vector<int>&pre,int s1,int e1,vector<int>&post,int s2,int e2) //s1,e1,s2,e2为待构造的序列下标范围
{
TreeNode* head=new TreeNode(pre[s1]);
if(s1==e1)return head; //没有孩子节点
auto it=find(post.begin()+s2,post.begin()+e2+1,pre[s1+1]);
int index=&*it-&post[0]; //int index=std::distance(std::begin(post),it);
int lchild_n=index-s2+1;
int rchild_n=e1-s1-lchild_n;
head->left=construct(pre,s1+1,s1+lchild_n ,post,s2,s2+lchild_n-1);
if(rchild_n==0)return head; //只有左子树
head->right=construct(pre,s1+1+lchild_n,e1,post,s2+lchild_n,e2-1);
return head;
}
};