大家好,我是大厂后端程序员阿煜。回望这一路的学习和成长,我深知技术学习过程中的难点与迷茫,希望通过文章让你在技术学习的路上少走弯路,轻松掌握关键知识!
最近deepseek火爆全网,你是不是官网都访问不了,或者速度极慢?
想不想流畅无阻的访问deepseek?
有没有想过部署deepseek在自己的电脑上?
如果你的回答是yes,那下面我们一起实操,将deepseek部署到自己的电脑上。
阅读完本文你可以实现deepseek的本地部署,并且了解到三种和自己本机的deepseek大模型进行交互的方式。
实际部署过程非常简单,相信你跟着操作10分钟能搞定!
什么是deepseek?
首先,我们先来大致认识下deepseek。DeepSeek是一个由中国初创公司杭州深度求索人工智能基础技术研究有限公司(Hangzhou DeepSeek Artificial Intelligence Co., Ltd)开发的一系列先进的人工智能模型和技术。
DeepSeek模型因其高效率和低成本而在全球范围内引起了广泛关注。特别是DeepSeek-V3和DeepSeek-R1这两个模型,在性能上与美国领先的AI模型如OpenAI的ChatGPT等相当甚至更优,但成本却大幅降低。DeepSeek的技术突破包括实现了万亿参数下的轻量化部署以及通过动态专家系统架构提升推理效率至行业标杆水平的3.2倍。
DeepSeek不仅在技术上有所突破,还在商业模式上采取了开源策略,这与许多其他AI企业依赖私有数据和算力垄断的传统路线不同。也正因为如此,我们现在才有机会在自己的电脑上进行deepseek大模型的部署。
了解完最近全网火爆的“deepseek”之后,我们开始进入deepseek的部署。
为了更方便的部署deepseek,我们需要借助一个工具,ollama。
ollama
什么是ollama?
Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。它的作用就是,简化了在个人电脑或其他本地环境中设置、配置和运行这些复杂模型的过程。我们之后会通过ollama来更快的部署deepseek。
安装ollama
首先,我们将ollama安装到我们的本地计算机,下载地址地址为:https://ollama.com/download/linux
。
linux操作系统一行命令就能搞定:
curl -fsSL https://ollama.com/install.sh | sh
如果是下载时网络速度不佳,可以试试将命令行分开才做,先下载再安装:
wget https://ollama.com/install.sh
sh ./install.sh
windows操作系统下载安装包,根据安装向导操作即可: https://ollama.com/download/windows
如果下载过慢可以尝试github网站:https://github.com/ollama/ollama/releases
。
若还是速度过慢,可通过文末二维码联系到我,分享给你已下载好的安装包。
设置ollama
默认情况下,模型会安装在 C 盘的用户目录下,例如C:\Users\用户名\.ollama
。如果需要更改此设置,可以通过系统环境变量来实现。创建一个新的名为OLLAMA_MODELS
的环境变量,并将其值设置为你希望存放模型的新路径,重启ollama即可生效。
重启ollama之后,若生成了blobs这个文件夹,就证明路径已经修改成功了!
对于使用Linux
平台的小伙伴,如果你想改变 Ollama 模型的存储路径,可以编辑 Ollama 服务配置文件 (ollama.service),添加 Environment="OLLAMA_MODELS=/path/to/new/models"
到 [Service]
部分,并重新加载 systemd 配置以及重启服务即可。
vim ollama.service
# vim内容
Environment="OLLAMA_MODELS=/path/to/new/models;..."
操作ollama
执行完上述操作之后,证明ollama已经初始化完成,下面我们简单操作下ollama这个工具:
ctrl+r
输入cmd
打开命令行,执行:
ollama list
会显示当前以及下载的模型:
当然,若什么模型都没有下载,列表为空。
显示成功后,也表明我们的ollama已经可以正常使用。
下面,我们就通过ollama下载deepseek-r1模型,实现deepseek的本地部署!
安装deepseek
搜素deepseek模型版本
首先,我们访问https://ollama.com/search
搜素deepseek:
可以看到多个deepseek版本,我们选择deepseek-r1,详细页面中会介绍具体的安装方式:
我们先安装一个最基本的、最小的版本DeepSeek-R1-Distill-Qwen-1.5B
,先把模型跑起来再说呗。
在命令行中执行:
ollama run deepseek-r1:1.5b
执行完成后,程序就开始下载对应版本的模型,可以看到,当前版本的模型大小为1个G,一般的家用电脑都是可以跑起来的。
下载完成后,我们就可以通过命令行和模型进行交互了!
至此,deepseek已经完成了本地部署,是不是很简单~
然而,通过命令行去进行交互也太不优雅了,所以我们还可以通过其他工具实现和大模型的交互,比如说webUI
以及chatbox
客户端。
如果你还想探索其他访问方式那就继续阅读下去吧。
chatbox访问
安装chatbox客户端
在https://github.com/Bin-Huang/chatbox/releases
下载chatbox安装包并安装chatbox客户端:
配置并使用
安装好chatbox客户端后,我们设置AI模型供应方为ollama并选择模型:
创建聊天框进行交互:
至此,我们已经可以和deepseek通过chatbox交互了!
如果你还想试试通过浏览器和deepseek进行交互,请继续阅读。
webUI访问
如果你想通过浏览器访问,首先要下载Anacoda以及docker,通过官网引导下载即可,这里不过多赘述了哦。
安装open-webui
创建新的conda环境:
conda create -n open-webui python=3.11
conda activate open-webui
安装open-webui
以及启动open-webui:
pip install open-webui
open-webui serve
此时,open-webui已运行在本机的8080端口。
启用webUI:docker运行
现在,我们需要通过open-webui
访问到我们下载好的deepseek模型。
官方(https://github.com/open-webui/open-webui
)只提供了docker运行的方式,如果本机上已安装好ollama可以执行:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
执行成功后,访问本机3000端口就可以和模型交互了,效果如下:
总结
我们首先简要介绍了deepseek,其主要优势在于开源策略以及他的较小的部署资源消耗,同时还有不错的性能表现,特别是deepseek r1
以及deepseek v3
。
然后,我们介绍了ollama
,简化大模型部署的工具。之后我们通过ollama下载了deepseek大模型,完成了deepseek的本机部署,并通过命令行的方式完成了与DeepSeek-R1-Distill-Qwen-1.5
大模型的交互。
最后我们介绍了另外两种可视化的交互方法,分别是chatbox
和open-webUI
工具。
希望本篇文章能让你在本地部署好属于自己的deepseek大模型。虽然本地部署的大模型没有官网那么强大的能力,但是至少一些简单的任务不用等待太久,或者出现像官网一样系统错误的回复,能够让我们及时得到自己想得到的解答。
参考
-
https://news.qq.com/rain/a/20250131A05NIP00
-
https://fddi.fudan.edu.cn/f1/9c/c21253a717212/page.htm
-
https://blog.csdn.net/qq_46554590/article/details/136547400
-
https://www.cnblogs.com/deali/p/18695132
您可能花了5分钟阅读本片文章,但我却花了2天时间整理、验证和书写,各位小伙伴可以帮我点点赞,或者在评论区给我留言,也可以关注我一下,这将是对程序员阿煜产出优质内容的莫大的鼓励~
关注程序员阿煜,轻松掌握关键知识!
最近整理了一下之前学习的资料,涵盖操作系统、计算机网络、AI、云计算等,如果有需要的小伙伴可以通过下面二维码联系我,免费分享,帮助大家节省时间。