课程前言:
Hoeffding不等式:
是关于一组随机变量均值的概率不等式,如果为一组独立同分布的参数为p的伯努利分布随机变量,n为随机变量的个数
对任意Hoeffding 不等式可以表示为:
泰勒展开式:
当x0 = 0 时:
麦克劳林级数:
残差:
指实际观察值与估计值(拟合值)之间的差,利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
式(8.5)
当f(x)=1时,
当f(x) = -1时,
是关于一组随机变量均值的概率不等式,如果为一组独立同分布的参数为p的伯努利分布随机变量,n为随机变量的个数
对任意Hoeffding 不等式可以表示为:
当x0 = 0 时:
麦克劳林级数:
指实际观察值与估计值(拟合值)之间的差,利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
当f(x)=1时,
当f(x) = -1时,