【西瓜书学习笔记】第8章:集成学习

这篇博客详细介绍了集成学习的相关概念,包括Hoeffding不等式在概率论中的应用,泰勒展开式的数学原理,以及在学习器权重分配中的残差分析。通过公式(8.5)到(8.19)的推导,揭示了理想学习器的形成过程及其重要性。
摘要由CSDN通过智能技术生成

课程前言:

Hoeffding不等式:

是关于一组随机变量均值的概率不等式,如果为一组独立同分布的参数为p的伯努利分布随机变量,n为随机变量的个数

\bar{X}=\frac{X1+X2+...+Xn}{n}

对任意Hoeffding 不等式可以表示为:

P(|\bar{X}-E \left(\bar{X}\right)|\geq\delta )\leq (exp(-2\delta^{2}n^{2})

 

泰勒展开式:

f(x)=f(x_{0})+f^{'}(x_{0})(x-x_{0})+\frac{f^{''}(x_{0})}{2!}(x-x_{0})^{2}+...+ \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}=\sum_{n=0} \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}

当x0 = 0 时:

麦克劳林级数:

\sum_{n=0} \frac{f^{(n)}(0)}{n!}(x)^{n}

 

残差

指实际观察值与估计值(拟合值)之间的差,利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。

 

式(8.5)

当f(x)=1时,e^{-f(x)H(x)}=e^{-H(X)}

当f(x) = -1时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值