西瓜书读书笔记——第七章:贝叶斯分类器

本文详细介绍了贝叶斯决策论及其在分类任务中的应用,包括贝叶斯最优分类器和风险最小化。接着,讨论了极大似然估计在估计概率分布参数中的作用,特别是对于离散和连续属性的处理。接着,引入了朴素贝叶斯分类器,解释了属性条件独立性假设,并探讨了拉普拉斯修正来处理零概率问题。最后,讨论了半朴素贝叶斯分类器,如SPODE、TAN和AODE,它们通过考虑部分属性依赖来改进分类性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


首先介绍一下贝叶斯公式:

在这里插入图片描述
实际上,分母为全概率公式,分子为联合概率。在机器学习中,更常见的形式为
P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A)=\dfrac{P(A|B)P(B)}{P(A)} P(BA)=P(A)P(AB)P(B)
贝叶斯公式的作用在于将P(B|A)的估计转化为估计P(A|B)和P(B)

7.1 贝叶斯决策论

\quad 贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。

\quad 对于分类任务来说,假设所有的相关概率已知,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记

基于后验概率 P ( c i ∣ x ) P(c_i|x) P(cix)可获得将样本 x x x分类为 c i c_i ci所产生的期望损失,即在样本 x x x上的条件风险(conditional risk)。
(7.1) R ( c i ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) R(c_i|x)=\sum_{j=1}^{N}\lambda_{ij}P(c_j|x)\tag{7.1} R(cix)=j=1NλijP(cjx)(7.1)
其中, λ i j \lambda_{ij} λij是将一个真实标记为 c j c_j cj的样本错误分类为 c i c_i ci所产生的损失(即:误判损失); R ( c i ∣ x ) R(c_i|x) R(cix)为条件风险,即期望损失(可由期望的公式理解式(7.1))

我们的目标就是寻找一个判定准则h来最小化所有样本的条件风险之和,即最小化总体风险。这样就产生了贝叶斯判定准则(Bayes decision rule):为最小化总体风险,只需在每个样本上选择那个能使条件风险 R ( c i ∣ x ) R(c_i|x) R(cix)的最小类别标记 c i c_i ci,即:
(7.3) h ∗ ( x ) = a r g min ⁡ c ∈ γ R ( c ∣ x ) h^*(x)=arg\min_{c\in \gamma} R(c|x)\tag{7.3} h(x)=argcγminR(cx)(7.3)
其中,有:

  • 贝叶斯最优分类器: h ∗ h^* h
  • 贝叶斯风险: R ( h ∗ ) R(h^*) R(h)
  • 贝叶斯最优分类器的最好性能: 1 − R ( h ∗ ) 1- R(h^*) 1R(h)

于是,为了最小化分类错误率,误判损失 λ i j \lambda_{ij} λij可定义为(错误率对应于0/1损失函数):
在这里插入图片描述
此时条件风险
(7.5) R ( c ∣ x ) = 1 − P ( c ∣ x ) R(c|x)=1-P(c|x)\tag{7.5} R(cx)=1P(cx)(7.5)
证明:将式(7.4)代入式(7.1),有在这里插入图片描述
于是,最小化分类错误率的贝叶斯最优分类器为:
(7.6) h ∗ ( x ) = a r g max ⁡ c ∈ γ P ( c ∣ x ) h^*(x)=arg\max_{c\in \gamma} P(c|x)\tag{7.6} h(x)=argcγmaxP(cx)(7.6)对每个样本x,选择能使后验概率P(c|x)最大的类别标记。(对每个样本选择类别标记)

从式(7.6)可以看出,欲使用贝叶斯判定准则来最小化决策风险,首先要得到后验概率P(c | x)。但在现实任务中,很难直接得到后验概率P(c | x)。

对于如何得到后验概率P(c | x),主要有两种策略:

  1. 给定 x x x,可通过直接建模P(c | x x x)来预测 c c c,这样得到的是判别式模型(discriminative models)。
  2. 先对联合概率分布P( x x x,c)建模,然后再由此获得P(c | x x x),这样得到的是生成式模型(generative models)。

之前学过的决策树,BP神经网络,支持向量机都是判别式模型。而对于生成式模型,有:
(7.7) P ( c ∣ x ) = P ( x , c ) P ( x ) P(c | x)=\dfrac{P(x,c)}{P(x)}\tag{7.7} P(cx)=P(x)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值