XGBoost模型保存与读取(多分类问题)

本文介绍了一种使用pickle库保存和加载XGBoost多分类模型的方法,解决了save_model与load_model函数在多分类场景下可能遇到的问题。通过示例代码展示了模型训练、保存及预测的完整流程。
摘要由CSDN通过智能技术生成

 在用XGBClassifier做多分类问题模型存取时,采用save_model与load_model函数发现并不是很好用,因此通过pickle进行模型的存取工作,在此记录,以备后用。

import pickle
from xgboost import XGBClassifier

#train

model_xg = XGBClassifier(
        n_estimators=20,
        learning_rate=0.1,
        max_depth=8,
        subsample=0.8,
        early_stopping_rounds = 50,
        objective='multi:softmax',
        eval_metric = 'mlogloss')
model_xg.fit(x_train, y_train,verbose=True)

# save
pickle.dump(model_xg, open("xgb.pkl", "wb"))

# load
xgb_model_loaded = pickle.load(open("xgb.pkl", "rb"))

# test
xgb_model_loaded.predict(test)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值