理解GloVe模型(Global vectors for word representation)

原文:https://blog.csdn.net/coderTC/article/details/73864097

理解GloVe模型
概述
模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息。
输入:语料库
输出:词向量
方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。
开始
统计共现矩阵
训练词向量
结束
统计共现矩阵
设共现矩阵为XX,其元素为Xi,jXi,j。 
Xi,jXi,j的意义为:在整个语料库中,单词ii和单词jj共同出现在一个窗口中的次数。 
举个栗子: 
设有语料库:

i love you but you love him i am sad

这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。 
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号    中心词    窗口内容
0    i    i love you
1    love    i love you but
2    you    i love you but you
3    but    love you but you love
4    you    you but you love him
5    love    but you love him i
6    him    you love him i am
7    i    love him i am sad
8    am    him i am sad
9    sad    i am sad
窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。 
以窗口5为例说明如何构造共现矩阵: 
中心词为love,语境词为but、you、him、i;则执行: 
Xlove,but+=1
Xlove,but+=1

Xlove,you+=1
Xlove,you+=1

Xlove,him+=1
Xlove,him+=1

Xlove,i+=1
Xlove,i+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵XX。
使用GloVe模型训练词向量
模型公式
先看模型,代价函数长这个样子: 
J=∑i,jNf(Xi,j)(vTivj+bi+bj−log(Xi,j))2
J=∑i,jNf(Xi,j)(viTvj+bi+bj−log(Xi,j))2

vivi,vjvj是单词ii和单词jj的词向量,bibi,bjbj是两个标量(作者定义的偏差项),ff是权重函数(具体函数公式及功能下一节介绍),NN是词汇表的大小(共现矩阵维度为N∗NN∗N)。 
可以看到,GloVe模型没有使用神经网络的方法。
模型怎么来的
那么作者为什么这么构造模型呢?首先定义几个符号: 
Xi=∑j=1NXi,j
Xi=∑j=1NXi,j

其实就是矩阵单词ii那一行的和; 
Pi,k=Xi,kXi
Pi,k=Xi,kXi

条件概率,表示单词kk出现在单词ii语境中的概率; 
ratioi,j,k=Pi,kPj,k
ratioi,j,k=Pi,kPj,k

两个条件概率的比率。 
作者的灵感是这样的: 
作者发现,ratioi,j,kratioi,j,k这个指标是有规律的,规律统计在下表:
ratioi,j,kratioi,j,k的值    单词j,k单词j,k相关    单词j,k单词j,k不相关
单词i,k单词i,k相关    趋近1    很大
单词i,k单词i,k不相关    很小    趋近1
很简单的规律,但是有用。 
思想:假设我们已经得到了词向量,如果我们用词向量vivi、vjvj、vkvk通过某种函数计算ratioi,j,kratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。 
设用词向量vivi、vjvj、vkvk计算ratioi,j,kratioi,j,k的函数为g(vi,vj,vk)g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有: 
Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)
Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)

即: 
Pi,kPj,k=g(vi,vj,vk)
Pi,kPj,k=g(vi,vj,vk)

即二者应该尽可能地接近; 
很容易想到用二者的差方来作为代价函数: 
J=∑i,j,kN(Pi,kPj,k−g(vi,vj,vk))2
J=∑i,j,kN(Pi,kPj,k−g(vi,vj,vk))2

但是仔细一看,模型中包含3个单词,这就意味着要在N∗N∗NN∗N∗N的复杂度上进行计算,太复杂了,最好能再简单点。 
现在我们来仔细思考g(vi,vj,vk)g(vi,vj,vk),或许它能帮上忙; 
作者的脑洞是这样的: 
1. 要考虑单词ii和单词jj之间的关系,那g(vi,vj,vk)g(vi,vj,vk)中大概要有这么一项吧:vi−vjvi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么vi−vjvi−vj大概是个合理的选择; 
2. ratioi,j,kratioi,j,k是个标量,那么g(vi,vj,vk)g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧:(vi−vj)Tvk(vi−vj)Tvk。 
3. 然后作者又往(vi−vj)Tvk(vi−vj)Tvk的外面套了一层指数运算exp()exp(),得到最终的g(vi,vj,vk)=exp((vi−vj)Tvk)g(vi,vj,vk)=exp((vi−vj)Tvk); 
最关键的第3步,为什么套了一层exp()exp()? 
套上之后,我们的目标是让以下公式尽可能地成立: 
Pi,kPj,k=g(vi,vj,vk)
Pi,kPj,k=g(vi,vj,vk)

即: 
Pi,kPj,k=exp((vi−vj)Tvk)
Pi,kPj,k=exp((vi−vj)Tvk)

即: 
Pi,kPj,k=exp(vTivk−vTjvk)
Pi,kPj,k=exp(viTvk−vjTvk)

即: 
Pi,kPj,k=exp(vTivk)exp(vTjvk)
Pi,kPj,k=exp(viTvk)exp(vjTvk)

然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即: 
Pi,k=exp(vTivk)并且Pj,k=exp(vTjvk)
Pi,k=exp(viTvk)并且Pj,k=exp(vjTvk)

然而分子分母形式相同,就可以把两者统一考虑了,即: 
Pi,j=exp(vTivj)
Pi,j=exp(viTvj)

本来我们追求: 
Pi,kPj,k=g(vi,vj,vk)
Pi,kPj,k=g(vi,vj,vk)

现在只需要追求: 
Pi,j=exp(vTivj)
Pi,j=exp(viTvj)

两边取个对数: 
log(Pi,j)=vTivj
log(Pi,j)=viTvj

那么代价函数就可以简化为: 
J=∑i,jN(log(Pi,j)−vTivj)2
J=∑i,jN(log(Pi,j)−viTvj)2

现在只需要在N∗NN∗N的复杂度上进行计算,而不是N∗N∗NN∗N∗N,现在关于为什么第3步中,外面套一层exp()exp()就清楚了,正是因为套了一层exp()exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。 
然而,出了点问题。 
仔细看这两个式子: 
log(Pi,j)=vTivj和log(Pj,i)=vTjvi
log(Pi,j)=viTvj和log(Pj,i)=vjTvi

log(Pi,j)log(Pi,j)不等于log(Pj,i)log(Pj,i)但是vTivjviTvj等于vTjvivjTvi;即等式左侧不具有对称性,但是右侧具有对称性。 
数学上出了问题。 
补救一下好了。 
现将代价函数中的条件概率展开: 
log(Pi,j)=vTivj
log(Pi,j)=viTvj

即为: 
log(Xi,j)−log(Xi)=vTivj
log(Xi,j)−log(Xi)=viTvj

将其变为: 
log(Xi,j)=vTivj+bi+bj
log(Xi,j)=viTvj+bi+bj

即添了一个偏差项bjbj,并将log(Xi)log(Xi)吸收到偏差项bibi中。 
于是代价函数就变成了: 
J=∑i,jN(vTivj+bi+bj−log(Xi,j))2
J=∑i,jN(viTvj+bi+bj−log(Xi,j))2

然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善: 
J=∑i,jNf(Xi,j)(vTivj+bi+bj−log(Xi,j))2
J=∑i,jNf(Xi,j)(viTvj+bi+bj−log(Xi,j))2

具体权重函数应该是怎么样的呢? 
首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为: 
f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
f(x)={(x/xmax)0.75,if x<xmax1,if x>=xmax

到此,整个模型就介绍完了。

--------------------- 
作者:饺子醋 
来源:CSDN 
原文:https://blog.csdn.net/coderTC/article/details/73864097 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值