机器视觉学习总结

本文介绍了机器视觉在工业中的应用,主要使用Halcon与VS或QT进行联合编程,涉及二维和三维视觉技术,包括定位识别、OCR、条码识别、尺寸测量、缺陷检测和手眼系统等。同时,提到了图像处理的关键步骤,如图像预处理、阈值分割、形态学处理和模板匹配等。此外,还推荐了几本关于数字图像处理和C++实践的书籍,强调了项目实战和学习C++、C#知识的重要性,以及未来机器视觉与深度学习结合的趋势。
摘要由CSDN通过智能技术生成

机器视觉工业应用上主要用Halcon与VS或QT做联合编程,图像处理算法在Halcon中编写,结合VS或QT做界面开发。

目前,工业上的机器视觉大致分二维和三维两大方面:

二维视觉:① 定位识别;② OCR光学字符识别;③ 条码(一维码,二维码等)定位识别;④ 尺寸测量(需要相机标定);⑤ 缺陷检测(多指外观缺陷);⑥ 手眼系统,运动控制抓取(手眼标定)

三维视觉:① 双目或多目相机;② 三维点云数据重构(三维的定位和抓取)

常用知识点:

1. 图像获取--图像采集装置(涉及相机镜头等硬件设备)

2. 图像预处理--图像增强、图像滤波、图像几何变换

3. 阈值分割--快速阈值、动态阈值、迭代阈值等--Blob分析

4. 图像频域处理(傅里叶变换、DFT、小波变换、高低通滤波器设计)

5. 形态学处理--膨胀、腐蚀、开运算、闭运算

6. 图像复原

7. 运动图像--手眼系统做分拣或抓取

8. 模板匹配--基于形状、基于灰度

9. 模式识别--快速检测与定位--分类器训练、神经网络、深度学习等

对应的参考书籍:

谢凤英编著-《Visual C++数字图像处理》;《精通系列·精通Visual C++数字图像处理典型算法及实现(第2版)》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值