第六章作业
1
设
C
=
[
c
1
c
2
c
3
]
u
=
[
u
1
u
2
u
3
]
C = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \\ u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}
C=[c1c2c3]u=⎣⎡u1u2u3⎦⎤
则
C
T
(
C
u
)
∧
C
=
C
T
(
c
1
u
1
+
c
2
u
2
+
c
3
u
3
)
∧
C
=
C
T
v
u
c
1
∧
C
+
C
T
v
u
c
2
∧
C
+
C
T
v
u
c
3
∧
C
C^T (Cu)^{\wedge}C = C^T (c_1u_1 + c_2u_2 + c_3 u_3)^{\wedge} C \\ = C^Tv_u c_1^{\wedge} C + C^Tv_u c_2^{\wedge} C + C^Tv_u c_3^{\wedge} C \\
CT(Cu)∧C=CT(c1u1+c2u2+c3u3)∧C=CTvuc1∧C+CTvuc2∧C+CTvuc3∧C
其中
C
T
u
1
c
1
∧
C
=
u
1
[
c
1
T
c
1
∧
c
1
c
1
T
c
1
∧
c
2
c
1
T
c
1
∧
c
3
c
2
T
c
1
∧
c
1
c
2
T
c
1
∧
c
2
c
2
T
c
1
∧
c
3
c
3
T
c
1
∧
c
1
c
3
T
c
1
∧
c
2
c
3
T
c
1
∧
c
3
]
=
u
1
[
0
0
0
0
0
−
1
0
1
0
]
C^Tu_1c_1^{\wedge}C = u_1 \begin{bmatrix} c_1^T c_1^{\wedge}c_1 & c_1^T c_1^{\wedge}c_2 & c_1^T c_1^{\wedge}c_3 \\ c_2^T c_1^{\wedge}c_1 & c_2^T c_1^{\wedge}c_2 & c_2^T c_1^{\wedge}c_3 \\ c_3^T c_1^{\wedge}c_1 & c_3^T c_1^{\wedge}c_2 & c_3^T c_1^{\wedge}c_3\end{bmatrix} \\ = u_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}
CTu1c1∧C=u1⎣⎡c1Tc1∧c1c2Tc1∧c1c3Tc1∧c1c1Tc1∧c2c2Tc1∧c2c3Tc1∧c2c1Tc1∧c3c2Tc1∧c3c3Tc1∧c3⎦⎤=u1⎣⎡0000010−10⎦⎤
C T u 2 c 2 ∧ C = u 2 [ c 1 T c 2 ∧ c 1 c 1 T c 2 ∧ c 2 c 1 T c 2 ∧ c 3 c 2 T c 2 ∧ c 1 c 2 T c 2 ∧ c 2 c 2 T c 2 ∧ c 3 c 3 T c 2 ∧ c 1 c 3 T c 2 ∧ c 2 c 3 T c 1 ∧ c 3 ] = u 2 [ 0 0 1 0 0 0 − 1 0 0 ] C^Tu_2c_2^{\wedge}C = u_2 \begin{bmatrix} c_1^T c_2^{\wedge}c_1 & c_1^T c_2^{\wedge}c_2 & c_1^T c_2^{\wedge}c_3 \\ c_2^T c_2^{\wedge}c_1 & c_2^T c_2^{\wedge}c_2 & c_2^T c_2^{\wedge}c_3 \\ c_3^T c_2^{\wedge}c_1 & c_3^T c_2^{\wedge}c_2 & c_3^T c_1^{\wedge}c_3\end{bmatrix} \\ = u_2 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} CTu2c2∧C=u2⎣⎡c1Tc2∧c1c2Tc2∧c1c3Tc2∧c1c1Tc2∧c2c2Tc2∧c2c3Tc2∧c2c1Tc2∧c3c2Tc2∧c3c3Tc1∧c3⎦⎤=u2⎣⎡00−1000100⎦⎤
C T u 3 c 3 ∧ C = u 3 [ c 1 T c 3 ∧ c 1 c 1 T c 3 ∧ c 2 c 1 T c 3 ∧ c 3 c 2 T c 3 ∧ c 1 c 2 T c 3 ∧ c 2 c 2 T c 3 ∧ c 3 c 3 T c 3 ∧ c 1 c 3 T c 3 ∧ c 2 c 3 T c 3 ∧ c 3 ] = u 3 [ 0 − 1 0 1 0 0 0 0 0 ] C^Tu_3c_3^{\wedge}C = u_3 \begin{bmatrix} c_1^T c_3^{\wedge}c_1 & c_1^T c_3^{\wedge}c_2 & c_1^T c_3^{\wedge}c_3 \\ c_2^T c_3^{\wedge}c_1 & c_2^T c_3^{\wedge}c_2 & c_2^T c_3^{\wedge}c_3 \\ c_3^T c_3^{\wedge}c_1 & c_3^T c_3^{\wedge}c_2 & c_3^T c_3^{\wedge}c_3\end{bmatrix} \\ = u_3 \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} CTu3c3∧C=u3⎣⎡c1Tc3∧c1c2Tc3∧c1c3Tc3∧c1c1Tc3∧c2c2Tc3∧c2c3Tc3∧c2c1Tc3∧c3c2Tc3∧c3c3Tc3∧c3⎦⎤=u3⎣⎡010−100000⎦⎤
加起来可得
C
T
(
C
u
)
∧
C
=
u
∧
C^T (Cu)^{\wedge}C = u^{\wedge}
CT(Cu)∧C=u∧
左右同乘
C
C
C和
C
T
C^T
CT,可证
(
C
u
)
∧
=
C
u
∧
C
T
(Cu)^{\wedge} = Cu^{\wedge}C^T
(Cu)∧=Cu∧CT
2.
根据表7-2,有如下性质
(
C
u
)
∧
=
u
∧
(
t
r
(
C
)
1
−
C
)
−
C
T
u
∧
(Cu)^{\wedge} = u^{\wedge}(tr(C)1 - C) - C^Tu^{\wedge}
(Cu)∧=u∧(tr(C)1−C)−CTu∧
t r ( C ) = 2 c o s ϕ + 1 tr(C) = 2cos\phi + 1 tr(C)=2cosϕ+1
代入得
(
C
u
)
∧
=
u
∧
(
t
r
(
C
)
1
−
C
)
−
C
T
u
∧
=
u
∧
(
(
2
c
o
s
ϕ
+
1
)
I
−
C
)
−
C
T
u
∧
=
2
c
o
s
ϕ
u
∧
−
u
∧
C
−
C
T
u
∧
(Cu)^{\wedge} = u^{\wedge}(tr(C)1 - C) - C^Tu^{\wedge}\\ = u^{\wedge}((2cos\phi+1)I - C)-C^Tu^{\wedge} \\ = 2cos\phi u^{\wedge} - u^{\wedge}C - C^Tu^{\wedge}
(Cu)∧=u∧(tr(C)1−C)−CTu∧=u∧((2cosϕ+1)I−C)−CTu∧=2cosϕu∧−u∧C−CTu∧
证闭
3.
根据第一题的证明可得
e
x
p
(
(
C
u
)
∧
)
=
e
x
p
(
C
u
∧
C
T
)
=
∑
n
=
0
∞
1
n
!
(
C
u
∧
C
T
)
n
=
C
u
∧
C
T
+
1
2
C
u
∧
C
T
C
u
∧
C
T
+
.
.
.
+
1
n
!
C
(
u
∧
)
n
C
T
=
C
∑
n
=
0
∞
1
n
!
(
u
∧
)
n
C
T
=
C
e
c
p
(
u
∧
)
C
T
exp((Cu)^{\wedge}) = exp(Cu^{\wedge}C^T) \\ = \sum_{n=0}^{\infty} \frac{1}{n!}{(Cu^{\wedge}C^T)^n} \\ = Cu^{\wedge}C^T + \frac{1}{2}Cu^{\wedge}C^TCu^{\wedge}C^T + ... + \frac{1}{n!}C(u^{\wedge})^nC^T \\ = C\sum_{n=0}^{\infty}{\frac{1}{n!} (u^{\wedge})^n}C^T \\ = Cecp(u^{\wedge})C^T
exp((Cu)∧)=exp(Cu∧CT)=n=0∑∞n!1(Cu∧CT)n=Cu∧CT+21Cu∧CTCu∧CT+...+n!1C(u∧)nCT=Cn=0∑∞n!1(u∧)nCT=Cecp(u∧)CT
4.
根据表7-3可得
(
T
x
)
∧
=
(
[
C
r
∧
C
0
C
]
[
u
v
]
)
∧
=
[
C
u
+
r
∧
C
v
C
v
]
∧
=
[
(
C
v
)
∧
C
u
+
r
∧
C
v
0
0
]
=
[
C
r
0
C
]
[
v
∧
C
T
u
+
C
−
1
r
∧
C
v
0
0
]
=
[
C
r
0
C
]
[
v
∧
C
T
u
+
(
C
T
r
)
∧
v
0
0
]
=
[
C
r
0
C
]
[
v
∧
u
0
0
]
[
C
T
−
C
T
r
0
1
]
=
T
x
∧
T
−
1
(\mathcal{T}x)^{\wedge} = (\begin{bmatrix} C & r^{\wedge}C \\ 0 & C \end{bmatrix}\begin{bmatrix} u \\ v \end{bmatrix})^{\wedge} \\ = \begin{bmatrix} Cu + r^{\wedge}Cv \\ Cv \end{bmatrix}^{\wedge} \\ = \begin{bmatrix} (Cv)^{\wedge} & Cu + r^{\wedge}Cv \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge}C^T & u + C^{-1}r^{\wedge}Cv \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge}C^T & u + (C^Tr)^{\wedge}v \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C^T & - C^T r \\ 0 & 1 \end{bmatrix} \\ = T x^{\wedge}T^{-1}
(Tx)∧=([C0r∧CC][uv])∧=[Cu+r∧CvCv]∧=[(Cv)∧0Cu+r∧Cv0]=[C0rC][v∧CT0u+C−1r∧Cv0]=[C0rC][v∧CT0u+(CTr)∧v0]=[C0rC][v∧0u0][CT0−CTr1]=Tx∧T−1
证闭
5.
这个证明与第三题类似,此处不重复进行指数的展开
e
x
p
(
(
T
x
)
∧
)
=
e
x
p
(
T
x
∧
T
−
1
)
=
∑
n
=
0
∞
1
n
!
(
T
x
∧
T
−
1
)
n
=
∑
n
=
0
∞
1
n
!
(
T
x
∧
)
n
T
−
1
=
T
∑
n
=
0
∞
1
n
!
(
x
∧
)
n
T
−
1
=
T
e
x
p
(
x
∧
)
T
−
1
exp((\mathcal{T}x)^{\wedge}) = exp(Tx^{\wedge}T^{-1}) \\ = \sum_{n=0}^{\infty}{\frac{1}{n!}(Tx^{\wedge}T^{-1})^n} \\ = \sum_{n=0}^{\infty}{\frac{1}{n!}(Tx^{\wedge})^nT^{-1}} \\ = T \sum_{n=0}^{\infty}{\frac{1}{n!}(x^{\wedge})^n} T^{-1}\\ = T exp(x^{\wedge})T^{-1}
exp((Tx)∧)=exp(Tx∧T−1)=n=0∑∞n!1(Tx∧T−1)n=n=0∑∞n!1(Tx∧)nT−1=Tn=0∑∞n!1(x∧)nT−1=Texp(x∧)T−1
7.
x ∧ p = [ u v ] ∧ [ ϵ η ] = [ v ∧ u 0 0 ] [ ϵ η ] = [ v ∧ ϵ + u η 0 ] = [ − ϵ ∧ v + u η 0 ] = [ η I − ϵ ∧ 0 0 ] [ u v ] = p ⊙ x x^{\wedge}p = \begin{bmatrix} u \\ v \end{bmatrix}^{\wedge} \begin{bmatrix} \epsilon \\ \eta \end{bmatrix} \\ = \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix}\begin{bmatrix} \epsilon \\ \eta \end{bmatrix} \\ = \begin{bmatrix} v^{\wedge}\epsilon + u\eta \\ 0 \end{bmatrix} \\ = \begin{bmatrix} -\epsilon^{\wedge}v + u\eta \\ 0 \end{bmatrix} \\ = \begin{bmatrix} \eta I & -\epsilon^{\wedge} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v\end{bmatrix} \\ = p^{\odot}x x∧p=[uv]∧[ϵη]=[v∧0u0][ϵη]=[v∧ϵ+uη0]=[−ϵ∧v+uη0]=[ηI0−ϵ∧0][uv]=p⊙x
证闭
8.
p T x ∧ = [ ϵ T η T ] [ v ∧ u 0 0 ] = [ ϵ T v ∧ ϵ T u ] = [ ( − v ∧ ϵ ) T ϵ T u ] = [ ( ϵ ∧ v ) T ϵ T u ] = [ − v T ϵ ∧ u T ϵ ] = [ u T v T ] [ 0 ϵ − ϵ ∧ 0 ] = x T p ⊚ p^Tx^{\wedge} = \begin{bmatrix} \epsilon^T & \eta^T \end{bmatrix} \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} \epsilon^T v ^{\wedge} & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} (-v^{\wedge}\epsilon)^T & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} (\epsilon^{\wedge}v)^T & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} -v^T \epsilon^{\wedge} & u^T \epsilon \end{bmatrix} \\ = \begin{bmatrix} u^T & v^T \end{bmatrix} \begin{bmatrix} 0 & \epsilon \\ - \epsilon^{\wedge} & 0 \\ \end{bmatrix} \\ = x^T p^{\circledcirc} pTx∧=[ϵTηT][v∧0u0]=[ϵTv∧ϵTu]=[(−v∧ϵ)TϵTu]=[(ϵ∧v)TϵTu]=[−vTϵ∧uTϵ]=[uTvT][0−ϵ∧ϵ0]=xTp⊚
证闭
11.
( T p ) ⊙ = ( [ C r 0 1 ] [ ϵ η ] ) ⊙ = [ C ϵ + η r η ] ⊙ = [ η − ( C ϵ + η r ) ∧ 0 0 ] (Tp)^{\odot} = (\begin{bmatrix} C & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \epsilon \\ \eta \end{bmatrix})^{\odot} \\ = \begin{bmatrix} C\epsilon + \eta r \\ \eta\end{bmatrix}^{\odot} \\ = \begin{bmatrix} \eta & -(C \epsilon + \eta r)^{\wedge} \\ 0 & 0 \end{bmatrix} (Tp)⊙=([C0r1][ϵη])⊙=[Cϵ+ηrη]⊙=[η0−(Cϵ+ηr)∧0]
T p ⊙ T − 1 = [ C r 0 1 ] [ η − ϵ ∧ 0 0 ] [ C T − C T r ∧ 0 C T ] = [ η C − C ϵ ∧ 0 0 ] [ C T − C T r ∧ 0 C T ] = [ η − η r ∧ − C ϵ ∧ C T 0 0 ] = [ η − η r ∧ − ( C ϵ ) ∧ 0 0 ] = [ η − ( C ϵ + η r ) ∧ 0 0 ] T p^{\odot}\mathcal{T}^{-1} = \begin{bmatrix} C & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \eta & -\epsilon^{\wedge} \\ 0 & 0\end{bmatrix} \begin{bmatrix}C^T & -C^Tr^{\wedge} \\ 0 & C^T \end{bmatrix} \\ = \begin{bmatrix} \eta C & -C \epsilon^{\wedge} \\ 0 & 0 \end{bmatrix} \begin{bmatrix}C^T & -C^Tr^{\wedge} \\ 0 & C^T \end{bmatrix} \\ = \begin{bmatrix} \eta & -\eta r^{\wedge} - C \epsilon^{\wedge}C^T \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} \eta & -\eta r^{\wedge} - (C \epsilon)^{\wedge} \\ 0 & 0 \end{bmatrix}\\ =\begin{bmatrix} \eta & -(C \epsilon + \eta r)^{\wedge} \\ 0 & 0 \end{bmatrix} Tp⊙T−1=[C0r1][η0−ϵ∧0][CT0−CTr∧CT]=[ηC0−Cϵ∧0][CT0−CTr∧CT]=[η0−ηr∧−Cϵ∧CT0]=[η0−ηr∧−(Cϵ)∧0]=[η0−(Cϵ+ηr)∧0]
等式左右两边相等,证闭
12.
根据11题的结论
(
T
p
)
⊙
T
(
T
p
)
⊙
=
(
T
p
⊙
T
−
1
)
T
(
T
p
⊙
T
−
1
)
=
T
−
1
T
p
⊙
T
T
T
T
p
⊙
T
−
1
=
T
−
1
T
p
⊙
T
p
⊙
T
−
1
{(Tp)^{\odot}}^T(Tp)^{\odot} \\ = (Tp^{\odot}\mathcal{T}^{-1})^T(Tp^{\odot}\mathcal{T}^{-1}) \\ = {\mathcal{T}^{-1}}^T {p^{\odot}}^TT^{T}Tp^{\odot}\mathcal{T}^{-1}\\ = {\mathcal{T}^{-1}}^T {p^{\odot}}^Tp^{\odot}\mathcal{T}^{-1}
(Tp)⊙T(Tp)⊙=(Tp⊙T−1)T(Tp⊙T−1)=T−1Tp⊙TTTTp⊙T−1=T−1Tp⊙Tp⊙T−1
证闭