第六章作业

第六章作业

1


C = [ c 1 c 2 c 3 ] u = [ u 1 u 2 u 3 ] C = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix} \\ u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} C=[c1c2c3]u=u1u2u3

C T ( C u ) ∧ C = C T ( c 1 u 1 + c 2 u 2 + c 3 u 3 ) ∧ C = C T v u c 1 ∧ C + C T v u c 2 ∧ C + C T v u c 3 ∧ C C^T (Cu)^{\wedge}C = C^T (c_1u_1 + c_2u_2 + c_3 u_3)^{\wedge} C \\ = C^Tv_u c_1^{\wedge} C + C^Tv_u c_2^{\wedge} C + C^Tv_u c_3^{\wedge} C \\ CT(Cu)C=CT(c1u1+c2u2+c3u3)C=CTvuc1C+CTvuc2C+CTvuc3C
其中
C T u 1 c 1 ∧ C = u 1 [ c 1 T c 1 ∧ c 1 c 1 T c 1 ∧ c 2 c 1 T c 1 ∧ c 3 c 2 T c 1 ∧ c 1 c 2 T c 1 ∧ c 2 c 2 T c 1 ∧ c 3 c 3 T c 1 ∧ c 1 c 3 T c 1 ∧ c 2 c 3 T c 1 ∧ c 3 ] = u 1 [ 0 0 0 0 0 − 1 0 1 0 ] C^Tu_1c_1^{\wedge}C = u_1 \begin{bmatrix} c_1^T c_1^{\wedge}c_1 & c_1^T c_1^{\wedge}c_2 & c_1^T c_1^{\wedge}c_3 \\ c_2^T c_1^{\wedge}c_1 & c_2^T c_1^{\wedge}c_2 & c_2^T c_1^{\wedge}c_3 \\ c_3^T c_1^{\wedge}c_1 & c_3^T c_1^{\wedge}c_2 & c_3^T c_1^{\wedge}c_3\end{bmatrix} \\ = u_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} CTu1c1C=u1c1Tc1c1c2Tc1c1c3Tc1c1c1Tc1c2c2Tc1c2c3Tc1c2c1Tc1c3c2Tc1c3c3Tc1c3=u1000001010

C T u 2 c 2 ∧ C = u 2 [ c 1 T c 2 ∧ c 1 c 1 T c 2 ∧ c 2 c 1 T c 2 ∧ c 3 c 2 T c 2 ∧ c 1 c 2 T c 2 ∧ c 2 c 2 T c 2 ∧ c 3 c 3 T c 2 ∧ c 1 c 3 T c 2 ∧ c 2 c 3 T c 1 ∧ c 3 ] = u 2 [ 0 0 1 0 0 0 − 1 0 0 ] C^Tu_2c_2^{\wedge}C = u_2 \begin{bmatrix} c_1^T c_2^{\wedge}c_1 & c_1^T c_2^{\wedge}c_2 & c_1^T c_2^{\wedge}c_3 \\ c_2^T c_2^{\wedge}c_1 & c_2^T c_2^{\wedge}c_2 & c_2^T c_2^{\wedge}c_3 \\ c_3^T c_2^{\wedge}c_1 & c_3^T c_2^{\wedge}c_2 & c_3^T c_1^{\wedge}c_3\end{bmatrix} \\ = u_2 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} CTu2c2C=u2c1Tc2c1c2Tc2c1c3Tc2c1c1Tc2c2c2Tc2c2c3Tc2c2c1Tc2c3c2Tc2c3c3Tc1c3=u2001000100

C T u 3 c 3 ∧ C = u 3 [ c 1 T c 3 ∧ c 1 c 1 T c 3 ∧ c 2 c 1 T c 3 ∧ c 3 c 2 T c 3 ∧ c 1 c 2 T c 3 ∧ c 2 c 2 T c 3 ∧ c 3 c 3 T c 3 ∧ c 1 c 3 T c 3 ∧ c 2 c 3 T c 3 ∧ c 3 ] = u 3 [ 0 − 1 0 1 0 0 0 0 0 ] C^Tu_3c_3^{\wedge}C = u_3 \begin{bmatrix} c_1^T c_3^{\wedge}c_1 & c_1^T c_3^{\wedge}c_2 & c_1^T c_3^{\wedge}c_3 \\ c_2^T c_3^{\wedge}c_1 & c_2^T c_3^{\wedge}c_2 & c_2^T c_3^{\wedge}c_3 \\ c_3^T c_3^{\wedge}c_1 & c_3^T c_3^{\wedge}c_2 & c_3^T c_3^{\wedge}c_3\end{bmatrix} \\ = u_3 \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} CTu3c3C=u3c1Tc3c1c2Tc3c1c3Tc3c1c1Tc3c2c2Tc3c2c3Tc3c2c1Tc3c3c2Tc3c3c3Tc3c3=u3010100000

加起来可得
C T ( C u ) ∧ C = u ∧ C^T (Cu)^{\wedge}C = u^{\wedge} CT(Cu)C=u
左右同乘 C C C C T C^T CT,可证
( C u ) ∧ = C u ∧ C T (Cu)^{\wedge} = Cu^{\wedge}C^T (Cu)=CuCT

2.

根据表7-2,有如下性质
( C u ) ∧ = u ∧ ( t r ( C ) 1 − C ) − C T u ∧ (Cu)^{\wedge} = u^{\wedge}(tr(C)1 - C) - C^Tu^{\wedge} (Cu)=u(tr(C)1C)CTu

t r ( C ) = 2 c o s ϕ + 1 tr(C) = 2cos\phi + 1 tr(C)=2cosϕ+1

代入得
( C u ) ∧ = u ∧ ( t r ( C ) 1 − C ) − C T u ∧ = u ∧ ( ( 2 c o s ϕ + 1 ) I − C ) − C T u ∧ = 2 c o s ϕ u ∧ − u ∧ C − C T u ∧ (Cu)^{\wedge} = u^{\wedge}(tr(C)1 - C) - C^Tu^{\wedge}\\ = u^{\wedge}((2cos\phi+1)I - C)-C^Tu^{\wedge} \\ = 2cos\phi u^{\wedge} - u^{\wedge}C - C^Tu^{\wedge} (Cu)=u(tr(C)1C)CTu=u((2cosϕ+1)IC)CTu=2cosϕuuCCTu
证闭

3.

根据第一题的证明可得
e x p ( ( C u ) ∧ ) = e x p ( C u ∧ C T ) = ∑ n = 0 ∞ 1 n ! ( C u ∧ C T ) n = C u ∧ C T + 1 2 C u ∧ C T C u ∧ C T + . . . + 1 n ! C ( u ∧ ) n C T = C ∑ n = 0 ∞ 1 n ! ( u ∧ ) n C T = C e c p ( u ∧ ) C T exp((Cu)^{\wedge}) = exp(Cu^{\wedge}C^T) \\ = \sum_{n=0}^{\infty} \frac{1}{n!}{(Cu^{\wedge}C^T)^n} \\ = Cu^{\wedge}C^T + \frac{1}{2}Cu^{\wedge}C^TCu^{\wedge}C^T + ... + \frac{1}{n!}C(u^{\wedge})^nC^T \\ = C\sum_{n=0}^{\infty}{\frac{1}{n!} (u^{\wedge})^n}C^T \\ = Cecp(u^{\wedge})C^T exp((Cu))=exp(CuCT)=n=0n!1(CuCT)n=CuCT+21CuCTCuCT+...+n!1C(u)nCT=Cn=0n!1(u)nCT=Cecp(u)CT

4.

根据表7-3可得
( T x ) ∧ = ( [ C r ∧ C 0 C ] [ u v ] ) ∧ = [ C u + r ∧ C v C v ] ∧ = [ ( C v ) ∧ C u + r ∧ C v 0 0 ] = [ C r 0 C ] [ v ∧ C T u + C − 1 r ∧ C v 0 0 ] = [ C r 0 C ] [ v ∧ C T u + ( C T r ) ∧ v 0 0 ] = [ C r 0 C ] [ v ∧ u 0 0 ] [ C T − C T r 0 1 ] = T x ∧ T − 1 (\mathcal{T}x)^{\wedge} = (\begin{bmatrix} C & r^{\wedge}C \\ 0 & C \end{bmatrix}\begin{bmatrix} u \\ v \end{bmatrix})^{\wedge} \\ = \begin{bmatrix} Cu + r^{\wedge}Cv \\ Cv \end{bmatrix}^{\wedge} \\ = \begin{bmatrix} (Cv)^{\wedge} & Cu + r^{\wedge}Cv \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge}C^T & u + C^{-1}r^{\wedge}Cv \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge}C^T & u + (C^Tr)^{\wedge}v \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} C & r \\ 0 & C \end{bmatrix} \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C^T & - C^T r \\ 0 & 1 \end{bmatrix} \\ = T x^{\wedge}T^{-1} (Tx)=([C0rCC][uv])=[Cu+rCvCv]=[(Cv)0Cu+rCv0]=[C0rC][vCT0u+C1rCv0]=[C0rC][vCT0u+(CTr)v0]=[C0rC][v0u0][CT0CTr1]=TxT1
证闭

5.

这个证明与第三题类似,此处不重复进行指数的展开
e x p ( ( T x ) ∧ ) = e x p ( T x ∧ T − 1 ) = ∑ n = 0 ∞ 1 n ! ( T x ∧ T − 1 ) n = ∑ n = 0 ∞ 1 n ! ( T x ∧ ) n T − 1 = T ∑ n = 0 ∞ 1 n ! ( x ∧ ) n T − 1 = T e x p ( x ∧ ) T − 1 exp((\mathcal{T}x)^{\wedge}) = exp(Tx^{\wedge}T^{-1}) \\ = \sum_{n=0}^{\infty}{\frac{1}{n!}(Tx^{\wedge}T^{-1})^n} \\ = \sum_{n=0}^{\infty}{\frac{1}{n!}(Tx^{\wedge})^nT^{-1}} \\ = T \sum_{n=0}^{\infty}{\frac{1}{n!}(x^{\wedge})^n} T^{-1}\\ = T exp(x^{\wedge})T^{-1} exp((Tx))=exp(TxT1)=n=0n!1(TxT1)n=n=0n!1(Tx)nT1=Tn=0n!1(x)nT1=Texp(x)T1

7.

x ∧ p = [ u v ] ∧ [ ϵ η ] = [ v ∧ u 0 0 ] [ ϵ η ] = [ v ∧ ϵ + u η 0 ] = [ − ϵ ∧ v + u η 0 ] = [ η I − ϵ ∧ 0 0 ] [ u v ] = p ⊙ x x^{\wedge}p = \begin{bmatrix} u \\ v \end{bmatrix}^{\wedge} \begin{bmatrix} \epsilon \\ \eta \end{bmatrix} \\ = \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix}\begin{bmatrix} \epsilon \\ \eta \end{bmatrix} \\ = \begin{bmatrix} v^{\wedge}\epsilon + u\eta \\ 0 \end{bmatrix} \\ = \begin{bmatrix} -\epsilon^{\wedge}v + u\eta \\ 0 \end{bmatrix} \\ = \begin{bmatrix} \eta I & -\epsilon^{\wedge} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ v\end{bmatrix} \\ = p^{\odot}x xp=[uv][ϵη]=[v0u0][ϵη]=[vϵ+uη0]=[ϵv+uη0]=[ηI0ϵ0][uv]=px

证闭

8.

p T x ∧ = [ ϵ T η T ] [ v ∧ u 0 0 ] = [ ϵ T v ∧ ϵ T u ] = [ ( − v ∧ ϵ ) T ϵ T u ] = [ ( ϵ ∧ v ) T ϵ T u ] = [ − v T ϵ ∧ u T ϵ ] = [ u T v T ] [ 0 ϵ − ϵ ∧ 0 ] = x T p ⊚ p^Tx^{\wedge} = \begin{bmatrix} \epsilon^T & \eta^T \end{bmatrix} \begin{bmatrix} v^{\wedge} & u \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} \epsilon^T v ^{\wedge} & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} (-v^{\wedge}\epsilon)^T & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} (\epsilon^{\wedge}v)^T & \epsilon^T u \end{bmatrix} \\ = \begin{bmatrix} -v^T \epsilon^{\wedge} & u^T \epsilon \end{bmatrix} \\ = \begin{bmatrix} u^T & v^T \end{bmatrix} \begin{bmatrix} 0 & \epsilon \\ - \epsilon^{\wedge} & 0 \\ \end{bmatrix} \\ = x^T p^{\circledcirc} pTx=[ϵTηT][v0u0]=[ϵTvϵTu]=[(vϵ)TϵTu]=[(ϵv)TϵTu]=[vTϵuTϵ]=[uTvT][0ϵϵ0]=xTp

证闭

11.

( T p ) ⊙ = ( [ C r 0 1 ] [ ϵ η ] ) ⊙ = [ C ϵ + η r η ] ⊙ = [ η − ( C ϵ + η r ) ∧ 0 0 ] (Tp)^{\odot} = (\begin{bmatrix} C & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \epsilon \\ \eta \end{bmatrix})^{\odot} \\ = \begin{bmatrix} C\epsilon + \eta r \\ \eta\end{bmatrix}^{\odot} \\ = \begin{bmatrix} \eta & -(C \epsilon + \eta r)^{\wedge} \\ 0 & 0 \end{bmatrix} (Tp)=([C0r1][ϵη])=[Cϵ+ηrη]=[η0(Cϵ+ηr)0]

T p ⊙ T − 1 = [ C r 0 1 ] [ η − ϵ ∧ 0 0 ] [ C T − C T r ∧ 0 C T ] = [ η C − C ϵ ∧ 0 0 ] [ C T − C T r ∧ 0 C T ] = [ η − η r ∧ − C ϵ ∧ C T 0 0 ] = [ η − η r ∧ − ( C ϵ ) ∧ 0 0 ] = [ η − ( C ϵ + η r ) ∧ 0 0 ] T p^{\odot}\mathcal{T}^{-1} = \begin{bmatrix} C & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \eta & -\epsilon^{\wedge} \\ 0 & 0\end{bmatrix} \begin{bmatrix}C^T & -C^Tr^{\wedge} \\ 0 & C^T \end{bmatrix} \\ = \begin{bmatrix} \eta C & -C \epsilon^{\wedge} \\ 0 & 0 \end{bmatrix} \begin{bmatrix}C^T & -C^Tr^{\wedge} \\ 0 & C^T \end{bmatrix} \\ = \begin{bmatrix} \eta & -\eta r^{\wedge} - C \epsilon^{\wedge}C^T \\ 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} \eta & -\eta r^{\wedge} - (C \epsilon)^{\wedge} \\ 0 & 0 \end{bmatrix}\\ =\begin{bmatrix} \eta & -(C \epsilon + \eta r)^{\wedge} \\ 0 & 0 \end{bmatrix} TpT1=[C0r1][η0ϵ0][CT0CTrCT]=[ηC0Cϵ0][CT0CTrCT]=[η0ηrCϵCT0]=[η0ηr(Cϵ)0]=[η0(Cϵ+ηr)0]

等式左右两边相等,证闭

12.

根据11题的结论
( T p ) ⊙ T ( T p ) ⊙ = ( T p ⊙ T − 1 ) T ( T p ⊙ T − 1 ) = T − 1 T p ⊙ T T T T p ⊙ T − 1 = T − 1 T p ⊙ T p ⊙ T − 1 {(Tp)^{\odot}}^T(Tp)^{\odot} \\ = (Tp^{\odot}\mathcal{T}^{-1})^T(Tp^{\odot}\mathcal{T}^{-1}) \\ = {\mathcal{T}^{-1}}^T {p^{\odot}}^TT^{T}Tp^{\odot}\mathcal{T}^{-1}\\ = {\mathcal{T}^{-1}}^T {p^{\odot}}^Tp^{\odot}\mathcal{T}^{-1} (Tp)T(Tp)=(TpT1)T(TpT1)=T1TpTTTTpT1=T1TpTpT1
证闭

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值