labuladong的回溯算法的学习

声明:

此文档是基于 labuladong的算法小抄 做的笔记

回溯算法框架:

解决⼀个回溯问题,实际上就是⼀个决 策树的遍历过程
只需要考虑三个问题

  1. 路径:也就是已经做出的选择。
  2. 选择列表:也就是你当前可以做的选择。
  3. 结束条件:也就是到达决策树底层,⽆法再做选择的条件

代码⽅⾯,回溯算法的框架:

result = [] 
def backtrack(路径, 选择列表): 
	if 满⾜结束条件: 
		result.add(路径) 
		return 
	for 选择 in 选择列表: 
		做选择 
		backtrack(路径, 选择列表) 
		撤销选择

其核⼼就是 for 循环⾥⾯的递归,在递归调⽤之前「做选择」,在递归调⽤ 之后「撤销选择」,特别简单。

一、全排列问题

我们在⾼中的时候就做过排列组合的数学题,我们也知道 n 个不重复的 数,全排列共有 n! 个。

PS:为了简单清晰起⻅,我们这次讨论的全排列问题不包含重复的数字。

那么我们当时是怎么穷举全排列的呢?⽐⽅说给三个数 [1,2,3] ,你肯定 不会⽆规律地乱穷举,⼀般是这样: 先固定第⼀位为 1,然后第⼆位可以是 2,那么第三位只能是 3;然后可以 把第⼆位变成 3,第三位就只能是 2 了;然后就只能变化第⼀位,变成 2, 然后再穷举后两位…… 其实这就是回溯算法,我们⾼中⽆师⾃通就会⽤,或者有的同学直接画出如 下这棵回溯树:
在这里插入图片描述
只要从根遍历这棵树,记录路径上的数字,其实就是所有的全排列。我们不 妨把这棵树称为回溯算法的「决策树」。
为啥说这是决策树呢,因为你在每个节点上其实都在做决策。⽐如说你站在 下图的红⾊节点上:
在这里插入图片描述
你现在就在做决策,可以选择 1 那条树枝,也可以选择 3 那条树枝。为啥只 能在 1 和 3 之中选择呢?因为 2 这个树枝在你⾝后,这个选择你之前做过 了,⽽全排列是不允许重复使⽤数字的。

现在可以解答开头的⼏个名词: [2] 就是「路径」,记录你已经做过的选 择; [1,3] 就是「选择列表」,表⽰你当前可以做出的选择;「结束条 件」就是遍历到树的底层,在这⾥就是选择列表为空的时候。

如果明⽩了这⼏个名词,可以把「路径」和「选择」列表作为决策树上每个 节点的属性,⽐如下图列出了⼏个节点的属性:

在这里插入图片描述
我们定义的 backtrack 函数其实就像⼀个指针,在这棵树上游⾛,同时要 正确维护每个节点的属性,每当⾛到树的底层,其「路径」就是⼀个全排 列。

再进⼀步,如何遍历⼀棵树?这个应该不难吧。各种搜索问题其实都是树的遍历问题,⽽多叉树的遍 历框架就是这样:

void traverse(TreeNode root) {
 	for (TreeNode child : root.childern) 
		 // 前序遍历需要的操作 
		 traverse(child); 
		 // 后序遍历需要的操作
 }

在这里插入图片描述

前序遍历的代码在进⼊某⼀个节点之前的那个时间点执⾏,后序遍历代码在 离开某个节点之后的那个时间点执⾏。
回想我们刚才说的,「路径」和「选择」是每个节点的属性,函数在树上游 ⾛要正确维护节点的属性,那么就要在这两个特殊时间点搞点动作:
在这里插入图片描述

全排列代码:
List<List<Integer>> res = new LinkedList<>();
/* 主函数,输⼊⼀组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
	// 记录「路径」
	LinkedList<Integer> track = new LinkedList<>();
	backtrack(nums, track);
	return res;
}
// 路径:记录在 track 中 
// 选择列表:nums 中不存在于 track 的那些元素 
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(int[] nums, LinkedList<Integer> track) {
	// 触发结束条件
	if (track.size() == nums.length) {
		 res.add(new LinkedList(track));
		 return; 
	}
	for (int i = 0; i < nums.length; i++) {
		// 排除不合法的选择
		if (track.contains(nums[i]))
			continue;
		// 做选择
		track.add(nums[i]);
		// 进⼊下⼀层决策树
		backtrack(nums, track);
		// 取消选择
		track.removeLast();
	}
}

在这里插入图片描述
⾄此,我们就通过全排列问题详解了回溯算法的底层原理。当然,这个算法 解决全排列不是很⾼效,应为对链表使⽤ contains ⽅法需要 O(N) 的时间 复杂度。

但是必须说明的是,不管怎么优化,都符合回溯框架,⽽且时间复杂度都不 可能低于 O(N!),因为穷举整棵决策树是⽆法避免的。这也是回溯算法的⼀ 个特点,不像动态规划存在重叠⼦问题可以优化,回溯算法就是纯暴⼒穷 举,复杂度⼀般都很⾼

二、N皇后问题

这个问题很经典了,简单解释⼀下:给你⼀个 N×N 的棋盘,让你放置 N 个 皇后,使得它们不能互相攻击。

PS:皇后可以攻击同⼀⾏、同⼀列、左上左下右上右下四个⽅向的任意单 位。

这个问题本质上跟全排列问题差不多,决策树的每⼀层表⽰棋盘上的每⼀ ⾏;每个节点可以做出的选择是,在该⾏的任意⼀列放置⼀个皇后

代码实现:

vector<vector<string>> res;
/* 输⼊棋盘边⻓ n,返回所有合法的放置 */
vector<vector<string>> solveNQueens(int n) {
	// '.' 表⽰空,'Q' 表⽰皇后,初始化空棋盘。
	vector<string> board(n, string(n, '.'));
	backtrack(board, 0);
	return res;
}

// 路径:board 中⼩于 row 的那些⾏都已经成功放置了皇后
// 选择列表:第 row ⾏的所有列都是放置皇后的选择
// 结束条件:row 超过 board 的最后⼀⾏
void backtrack(vector<string>& board, int row) {
	// 触发结束条件
	if (row == board.size()) {
	 	res.push_back(board); 
		return; 
	}
	int n = board[row].size();
	for (int col = 0; col < n; col++) {
		// 排除不合法选择
		if (!isValid(board, row, col))
			continue;
		// 做选择
		board[row][col] = 'Q';
		// 进⼊下⼀⾏决策
		backtrack(board, row + 1);
		// 撤销选择
		board[row][col] = '.';
	}
}

这部分主要代码,其实跟全排列问题差不多, isValid 函数的实现也很简 单:

/* 是否可以在 board[row][col] 放置皇后? */
bool isValid(vector<string>& board, int row, int col) {
	int n = board.size();
	// 检查列是否有皇后互相冲突
	for (int i = 0; i < n; i++) {
		if (board[i][col] == 'Q') 
			return false; 
	}
	// 检查右上⽅是否有皇后互相冲突
	for (int i = row - 1, j = col + 1;i >= 0 && j < n; i--, j++) {
		if (board[i][j] == 'Q')
			return false; 
	}
	// 检查左上⽅是否有皇后互相冲突
	for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
	 if (board[i][j] == 'Q') 
	 	return false; 
	}
return true;

函数 backtrack 依然像个在决策树上游⾛的指针,通过 row 和 col 就可 以表⽰函数遍历到的位置,通过 isValid 函数可以将不符合条件的情况剪 枝:

有的时候,我们并不想得到所有合法的答案,只想要⼀个答案,怎么办呢?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值