新零售复购分析,简单 3 步抓住回头客

作者:德措吉

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

复购分析对于新零售的重要意义

现在无论是互联网,还是新零售行业,获客成本都越来越高。与此同时,新零售等行业出现了会员流失严重,客户活跃率低,商品销售额增长缓慢等新的难题。在增长迟滞的阶段,留住回头客或者说忠诚客户,就是非常关键的切入点,而复购分析在这里就会扮演重要作用。

这一点也得到了金牌流量运营 RFM 模型的佐证,其中的 F (Frequency ,消费频率)就是我们这里提到的复购。本篇博客中,我们将基于 Kyligence Zen 提供的零售行业一站式指标模版进行客户的复购指标分析,我们将定义 3 个 RMF 指标,对用户进行分层;针对不同价值的用户采取不同的运营手段,提高复购率。

简单 3 步,使用 Kyligence Zen 进行复购分析

Kyligence Zen 里进行复购指标分析,只需要简单 3 步,下面我们来具体看一下。

首先我们可以一键导入 Kyligence Zen 提供的零售指标模板,来支持多种不同的针对复购分析的运营策略判断。下面以复购率来举例:

导入零售样例数据集

在数据入口上传 CSV 即可完成数据源导入(图片来自 Kyligence)

导入零售指标模板

Kyligence Zen 支持指标的 YAML 格式定义,可以进行指标的批量创建和导入。指标定义中包括明确的计算方式和可进行汇总分析的维度。我们这里的指标主要基于以下三个指标创建:

1. 复购率:简称 RPR(Repeat Purchase Rate),指复购客户数除以活跃客户数的比例:

复购率 = 复购客户数 / 活跃客户数 * 100%

2. 复购客户数:特定时间范围内,购买次数大于 1 次的客户数量。这个指标直接反映出客户的消费能力和购买意愿,并直接影响到客户忠诚度指标。复购率越高,说明消费者对该门店 / 品牌的忠诚度越高,反之则越低。所以复购率也直接反映了消费者对门店 / 品牌的满意度。

3. 交叉购买率:复购分析,并不仅仅关注复购率。复购率关注的仅仅是单位时间内的购买次数,但商品种类可能多种多样,用户重复购买的是单一品类,还是有多种不同的商品,这就需要由交叉购买率来给出答案。交叉购买率,是指交叉销售客户数除以活跃客户数的比例:

交叉购买率 = 交叉销售客户数 / 活跃客户数 * 100%

4. 交叉销售客户数:侧重于统计客户在指定的时间范围内是否购买了不同分类的商品;这是对多样性需求进行挖掘和匹配的主要分析方法之一。

复购率指标 YAML 格式定义示例如下,我们还在其中增加了维度,这样可以通过订单日期年份、订单日期月份、门店区域以及客户姓名等维度进行聚合分析。

#复购率|Repeat Purchase Rate【复合】
  - name: Repeat Purchase Rate
    display_name: 复购率|Repeat Purchase Rate - Retail
    description: 复购率简称为RPR,按复购客户数除以活跃客户数的比例计算
    datasource: retail_stores_by_customer
    type: composite
    status: online
    measure:
      expressions: ${Repeat Purchase Customers} / ${Active Customers}
      return_type: float
      format:
        type: percentage
        decimal_place: 2
    dimensions:
      order_date_year:
        expressions: retail_stores_by_customer.order_date_year
        display_name: 订单日期年
      order_date_month:
        expressions: retail_stores_by_customer.order_date_month
        display_name: 订单日期月
      store_region:
        expressions: retail_stores_by_customer.store_region
        display_name: 门店区域
      store_city:
        expressions: retail_stores_by_customer.customer_name
        display_name: 客户姓名

接下来,我们将在Kyligence Zen 的指标页面上传 Yaml,完成指标的创建。 

 在指标目录里一键导入 YAML 指标模板(图片来自 Kyligence)

复购率指标和 Kyligence Zen 指标目录(图片来自 Kyligence)

围绕复购指标进行分析,识别回头客和复购特征

在 Kyligence Zen 平台上,我们可以直接查看单独的指标,也可以通过仪表盘看到更详尽的复购归因分析,以供决策使用。

根据对下面仪表盘的分析,我们可以看出:与 2015 年度相比,2018 年度的复购率呈现增长趋势;从月份来看,年底的活跃用户数和用户复购率都有一定增加。新零售企业的用户运营部门可以结合这些报表分析结果,进一步调整和制定有效的运营策略,助力新零售企业实现销售增长。

 指标可视化展示(图片来自 Kyligence)

用户贡献和忠诚度分析可视化仪表盘(图片来自 Kyligence)

即刻体验 Kyligence Zen

Kyligence Zen 提供了零售行业指标模板,不仅仅具备复购分析的相关指标,也同样可以便捷地分析诸多和客户忠诚度相关的信息。

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
课程简介:  本项目课程是一门极具综合性和完整性的大型项目课程;课程项目的业务背景源自各类互联网公司对海量用户浏览行为数据和业务数据分析的需求及企业数据管理、数据运营需求。 本课程项目涵盖数据采集与预处理、数据仓库体系建设、用户画像系统建设、数据治理(元数据管理、数据质量管理)、任务调度系统、数据服务层建设、OLAP即席分析系统建设等大量模块,力求原汁原味重现一个完备的企业级大型数据运营系统。  拒绝demo,拒绝宏观抽象,拒绝只讲不练,本课程高度揉和理论与实战,并兼顾各层次的学员,真正从0开始,循序渐进,每一个骤每一个环节,都会带领学员从需求分析开始,到逻辑设计,最后落实到每一行代码,所有流程都采用企业级解决方案,并手把手带领学员一一实现,拒绝复制粘贴,拒绝demo化的实现。并且会穿插大量的原创图解,来帮助学员理解复杂逻辑,掌握关键流程,熟悉核心架构。   跟随项目课程,历经接近100+小时的时间,从需求分析开始,到数据埋点采集,到预处理程序代码编写,到数仓体系搭建......逐渐展开整个项目的宏大视图,构建起整个项目的摩天大厦。  由于本课程不光讲解项目的实现,还会在实现过程中反复揉和各种技术细节,各种设计思想,各种最佳实践思维,学完本项目并勤于实践的话,学员的收获将远远超越一个项目的具体实现,更能对大型数据系统开发产生深刻体悟,对很多技术的应用将感觉豁然开朗,并带来融会贯通能力的巨大飞跃。当然,最直接的收获是,学完本课程,你将很容易就拿到大数据数仓建设或用户画像建设等岗位的OFFER课程模块: 1. 数据采集:涉及到埋点日志flume采集系统,sqoop业务数据抽取系统等; 2. 数据预处理:涉及到各类字典数据构建,复杂结构数据清洗解析,数据集成,数据修正,以及多渠道数据的用户身份标识打通:ID-MAPPING等;3. 数据仓库:涉及到hive数仓基础设施搭建,数仓分层体系设计,数仓分析主题设计,多维分析实现,ETL任务脚本开发,ETL任务调度,数据生命周期管理等;4. 数据治理:涉及数据资产查询管理,数据质量监控管理,atlas元数据管理系统,atlas数据血缘管理等;5. 用户画像系统:涉及画像标签体系设计,标签体系层级关系设计,各类标签计算实现,兴趣类标签的衰减合并,模型标签的机器学习算法应用及特征提取、模型训练等;6. OLAP即席分析平台:涉及OLAP平台的整体架构设计,技术选型,底层存储实现,Presto查询引擎搭建,数据服务接口开发等;7. 数据服务:涉及数据服务的整体设计理念,架构搭建,各类数据访问需求的restapi开发等;课程所涉及的技术: 整个项目课程中,将涉及到一个大型数据系统中所用到的几乎所有主要技术,具体来说,包含但不限于如下技术组件:l Hadoopl Hivel HBasel SparkCore /SparkSQL/ Spark GRAPHX / Spark Mllibl Sqoopl Azkabanl Flumel lasal Kafkal Zookeeperl Solrl Prestop
### 回答1: 以下是使用 Scala 实现的逻辑回归算法示例代码,用于预测淘宝购物者是否会成为回头客: ```scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.mllib.util.MLUtils object LogisticRegressionDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("LogisticRegressionDemo").setMaster("local") val sc = new SparkContext(conf) // 加载数据 val data = MLUtils.loadLibSVMFile(sc, "data/sample_libsvm_data.txt") // 将数据划分为训练集和测试集 val splits = data.randomSplit(Array(0.7, 0.3)) val (trainingData, testData) = (splits(0), splits(1)) // 训练模型 val model = new LogisticRegressionWithLBFGS().setNumClasses(2).run(trainingData) // 测试模型 val labelAndPreds = testData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count() println("Test Error = " + testErr) // 评估模型 val metrics = new BinaryClassificationMetrics(labelAndPreds) val auROC = metrics.areaUnderROC() println("Area under ROC = " + auROC) // 保存模型 model.save(sc, "myModelPath") // 加载模型 val sameModel = LogisticRegressionModel.load(sc, "myModelPath") } } ``` 在这个示例中,我们使用了 Spark MLlib 库中的逻辑回归算法,通过加载样本数据、划分训练集和测试集、训练模型、测试模型以及保存和加载模型等骤,实现了对淘宝购物者是否会成为回头客进行预测的功能。逻辑回归算法能够通过对样本数据进行学习,建立一个逻辑回归模型,来对未知数据进行预测,从而实现分类的目的。 ### 回答2: Scala 淘宝回头客逻辑回归是一种应用在淘宝电商平台上的机器学习算法。在电商平台中,吸引老顾客再次购买是非常重要的,因为老顾客在购买过程中已经建立了信任和忠诚度,他们的消费贡献较高且成单率较高。 逻辑回归是一种分类模型,可以用于预测一个离散型目标变量。在淘宝回头客预测中,目标变量可以是"回头客"和"非回头客"两类。逻辑回归通过学习历史数据中的特征与目标变量之间的关系,并利用这种关系来进行未来顾客的回头客预测。 Scala 是一种在 JVM 上运行的编程语言,具有强大的函数式编程能力,与Java天然互操作,因此广泛应用于大数据领域的数据处理和机器学习任务。Scala 提供了丰富的函数库来支持大规模数据的处理和分析,使得开发者能够便捷地实现逻辑回归模型。 在实际应用中,通过Scala编写的逻辑回归算法可以根据多个特征值(例如,顾客的浏览次数、购买次数、购物篮中商品的种类等)来预测顾客是否为回头客。逻辑回归算法通过最大化似然函数来进行参数估计,并将新顾客的特征输入到模型中,以预测他们成为回头客的概率。 通过Scala淘宝回头客逻辑回归模型的应用,淘宝平台可以更好地了解顾客的行为模式,并根据预测的回头客概率采取相应的营销策略,例如通过个性化推荐、优惠券等方式来提高顾客的忠诚度和购买意愿,从而进一提升淘宝的用户体验和销售额。该模型的持续改进和优化可以为淘宝平台带来长期的商业价值。 ### 回答3: 在淘宝回头客的预测中,逻辑回归是一种常用的算法。Scala语言提供了强大的函数式编程和面向对象编程的特性,适合用于实现逻辑回归算法。 逻辑回归是一种二分类算法,目的是根据特征变量的线性组合来预测不同类别的概率。在淘宝回头客的应用中,我们可以将各种用户特征作为输入变量,例如用户年龄、性别、购买历史等,以及目标变量,即用户是否成为回头客。逻辑回归模型可以根据这些特征来预测用户成为回头客的概率。 在Scala中,我们可以使用Spark的MLlib库来实现逻辑回归。MLlib提供了一个LogisticRegression类,它可以自动处理特征值的规范化、数据划分等预处理骤。我们可以使用Spark的DataFrame API来读取和处理数据,然后使用LogisticRegression类创建一个逻辑回归模型。 逻辑回归模型的训练可以使用Spark的分布式计算能力,在大规模数据集上高效运行。训练完成后,我们可以使用模型来预测新样本的回头客概率。通过对用户进行分组,我们可以根据预测概率来识别潜在的回头客。 除了逻辑回归,Scala还提供了其他的机器学习算法和工具,例如决策树、随机森林和梯度提升树等。这些算法可以结合使用,提高模型的准确性和鲁棒性。 总而言之,Scala语言和逻辑回归算法在淘宝回头客预测中的应用是非常合适的。Scala的函数式编程和面向对象编程特性提供了强大的工具,而逻辑回归算法可以帮助我们预测用户成为回头客的概率。通过使用Scala和逻辑回归,我们可以构建一个高效、准确的淘宝回头客预测模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值