新零售复购分析,简单 3 步抓住回头客

本文介绍了如何利用KyligenceZen进行复购分析,特别是针对新零售行业的场景。通过导入零售指标模板,定义复购率、复购客户数和交叉购买率等关键指标,进行客户分层,并通过仪表盘进行可视化分析。借助KyligenceZen,可以洞察用户行为,提升复购率和客户忠诚度,为新零售企业制定有效运营策略提供数据支持。
摘要由CSDN通过智能技术生成

作者:德措吉

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

复购分析对于新零售的重要意义

现在无论是互联网,还是新零售行业,获客成本都越来越高。与此同时,新零售等行业出现了会员流失严重,客户活跃率低,商品销售额增长缓慢等新的难题。在增长迟滞的阶段,留住回头客或者说忠诚客户,就是非常关键的切入点,而复购分析在这里就会扮演重要作用。

这一点也得到了金牌流量运营 RFM 模型的佐证,其中的 F (Frequency ,消费频率)就是我们这里提到的复购。本篇博客中,我们将基于 Kyligence Zen 提供的零售行业一站式指标模版进行客户的复购指标分析,我们将定义 3 个 RMF 指标,对用户进行分层;针对不同价值的用户采取不同的运营手段,提高复购率。

简单 3 步,使用 Kyligence Zen 进行复购分析

Kyligence Zen 里进行复购指标分析,只需要简单 3 步,下面我们来具体看一下。

首先我们可以一键导入 Kyligence Zen 提供的零售指标模板,来支持多种不同的针对复购分析的运营策略判断。下面以复购率来举例:

导入零售样例数据集

在数据入口上传 CSV 即可完成数据源导入(图片来自 Kyligence)

导入零售指标模板

Kyligence Zen 支持指标的 YAML 格式定义,可以进行指标的批量创建和导入。指标定义中包括明确的计算方式和可进行汇总分析的维度。我们这里的指标主要基于以下三个指标创建:

1. 复购率:简称 RPR(Repeat Purchase Rate),指复购客户数除以活跃客户数的比例:

复购率 = 复购客户数 / 活跃客户数 * 100%

2. 复购客户数:特定时间范围内,购买次数大于 1 次的客户数量。这个指标直接反映出客户的消费能力和购买意愿,并直接影响到客户忠诚度指标。复购率越高,说明消费者对该门店 / 品牌的忠诚度越高,反之则越低。所以复购率也直接反映了消费者对门店 / 品牌的满意度。

3. 交叉购买率:复购分析,并不仅仅关注复购率。复购率关注的仅仅是单位时间内的购买次数,但商品种类可能多种多样,用户重复购买的是单一品类,还是有多种不同的商品,这就需要由交叉购买率来给出答案。交叉购买率,是指交叉销售客户数除以活跃客户数的比例:

交叉购买率 = 交叉销售客户数 / 活跃客户数 * 100%

4. 交叉销售客户数:侧重于统计客户在指定的时间范围内是否购买了不同分类的商品;这是对多样性需求进行挖掘和匹配的主要分析方法之一。

复购率指标 YAML 格式定义示例如下,我们还在其中增加了维度,这样可以通过订单日期年份、订单日期月份、门店区域以及客户姓名等维度进行聚合分析。

#复购率|Repeat Purchase Rate【复合】
  - name: Repeat Purchase Rate
    display_name: 复购率|Repeat Purchase Rate - Retail
    description: 复购率简称为RPR,按复购客户数除以活跃客户数的比例计算
    datasource: retail_stores_by_customer
    type: composite
    status: online
    measure:
      expressions: ${Repeat Purchase Customers} / ${Active Customers}
      return_type: float
      format:
        type: percentage
        decimal_place: 2
    dimensions:
      order_date_year:
        expressions: retail_stores_by_customer.order_date_year
        display_name: 订单日期年
      order_date_month:
        expressions: retail_stores_by_customer.order_date_month
        display_name: 订单日期月
      store_region:
        expressions: retail_stores_by_customer.store_region
        display_name: 门店区域
      store_city:
        expressions: retail_stores_by_customer.customer_name
        display_name: 客户姓名

接下来,我们将在Kyligence Zen 的指标页面上传 Yaml,完成指标的创建。 

 在指标目录里一键导入 YAML 指标模板(图片来自 Kyligence)

复购率指标和 Kyligence Zen 指标目录(图片来自 Kyligence)

围绕复购指标进行分析,识别回头客和复购特征

在 Kyligence Zen 平台上,我们可以直接查看单独的指标,也可以通过仪表盘看到更详尽的复购归因分析,以供决策使用。

根据对下面仪表盘的分析,我们可以看出:与 2015 年度相比,2018 年度的复购率呈现增长趋势;从月份来看,年底的活跃用户数和用户复购率都有一定增加。新零售企业的用户运营部门可以结合这些报表分析结果,进一步调整和制定有效的运营策略,助力新零售企业实现销售增长。

 指标可视化展示(图片来自 Kyligence)

用户贡献和忠诚度分析可视化仪表盘(图片来自 Kyligence)

即刻体验 Kyligence Zen

Kyligence Zen 提供了零售行业指标模板,不仅仅具备复购分析的相关指标,也同样可以便捷地分析诸多和客户忠诚度相关的信息。

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

课程简介:  本项目课程是一门极具综合性和完整性的大型项目课程;课程项目的业务背景源自各类互联网公司对海量用户浏览行为数据和业务数据分析的需求及企业数据管理、数据运营需求。 本课程项目涵盖数据采集与预处理、数据仓库体系建设、用户画像系统建设、数据治理(元数据管理、数据质量管理)、任务调度系统、数据服务层建设、OLAP即席分析系统建设等大量模块,力求原汁原味重现一个完备的企业级大型数据运营系统。  拒绝demo,拒绝宏观抽象,拒绝只讲不练,本课程高度揉和理论与实战,并兼顾各层次的学员,真正从0开始,循序渐进,每一个骤每一个环节,都会带领学员从需求分析开始,到逻辑设计,最后落实到每一行代码,所有流程都采用企业级解决方案,并手把手带领学员一一实现,拒绝复制粘贴,拒绝demo化的实现。并且会穿插大量的原创图解,来帮助学员理解复杂逻辑,掌握关键流程,熟悉核心架构。   跟随项目课程,历经接近100+小时的时间,从需求分析开始,到数据埋点采集,到预处理程序代码编写,到数仓体系搭建......逐渐展开整个项目的宏大视图,构建起整个项目的摩天大厦。  由于本课程不光讲解项目的实现,还会在实现过程中反复揉和各种技术细节,各种设计思想,各种最佳实践思维,学完本项目并勤于实践的话,学员的收获将远远超越一个项目的具体实现,更能对大型数据系统开发产生深刻体悟,对很多技术的应用将感觉豁然开朗,并带来融会贯通能力的巨大飞跃。当然,最直接的收获是,学完本课程,你将很容易就拿到大数据数仓建设或用户画像建设等岗位的OFFER课程模块: 1. 数据采集:涉及到埋点日志flume采集系统,sqoop业务数据抽取系统等; 2. 数据预处理:涉及到各类字典数据构建,复杂结构数据清洗解析,数据集成,数据修正,以及多渠道数据的用户身份标识打通:ID-MAPPING等;3. 数据仓库:涉及到hive数仓基础设施搭建,数仓分层体系设计,数仓分析主题设计,多维分析实现,ETL任务脚本开发,ETL任务调度,数据生命周期管理等;4. 数据治理:涉及数据资产查询管理,数据质量监控管理,atlas元数据管理系统,atlas数据血缘管理等;5. 用户画像系统:涉及画像标签体系设计,标签体系层级关系设计,各类标签计算实现,兴趣类标签的衰减合并,模型标签的机器学习算法应用及特征提取、模型训练等;6. OLAP即席分析平台:涉及OLAP平台的整体架构设计,技术选型,底层存储实现,Presto查询引擎搭建,数据服务接口开发等;7. 数据服务:涉及数据服务的整体设计理念,架构搭建,各类数据访问需求的restapi开发等;课程所涉及的技术: 整个项目课程中,将涉及到一个大型数据系统中所用到的几乎所有主要技术,具体来说,包含但不限于如下技术组件:l Hadoopl Hivel HBasel SparkCore /SparkSQL/ Spark GRAPHX / Spark Mllibl Sqoopl Azkabanl Flumel lasal Kafkal Zookeeperl Solrl Prestop
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值