新零售复购分析,简单 3 步抓住回头客

本文介绍了如何利用KyligenceZen进行复购分析,特别是针对新零售行业的场景。通过导入零售指标模板,定义复购率、复购客户数和交叉购买率等关键指标,进行客户分层,并通过仪表盘进行可视化分析。借助KyligenceZen,可以洞察用户行为,提升复购率和客户忠诚度,为新零售企业制定有效运营策略提供数据支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:德措吉

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

复购分析对于新零售的重要意义

现在无论是互联网,还是新零售行业,获客成本都越来越高。与此同时,新零售等行业出现了会员流失严重,客户活跃率低,商品销售额增长缓慢等新的难题。在增长迟滞的阶段,留住回头客或者说忠诚客户,就是非常关键的切入点,而复购分析在这里就会扮演重要作用。

这一点也得到了金牌流量运营 RFM 模型的佐证,其中的 F (Frequency ,消费频率)就是我们这里提到的复购。本篇博客中,我们将基于 Kyligence Zen 提供的零售行业一站式指标模版进行客户的复购指标分析,我们将定义 3 个 RMF 指标,对用户进行分层;针对不同价值的用户采取不同的运营手段,提高复购率。

简单 3 步,使用 Kyligence Zen 进行复购分析

Kyligence Zen 里进行复购指标分析,只需要简单 3 步,下面我们来具体看一下。

首先我们可以一键导入 Kyligence Zen 提供的零售指标模板,来支持多种不同的针对复购分析的运营策略判断。下面以复购率来举例:

导入零售样例数据集

在数据入口上传 CSV 即可完成数据源导入(图片来自 Kyligence)

导入零售指标模板

Kyligence Zen 支持指标的 YAML 格式定义,可以进行指标的批量创建和导入。指标定义中包括明确的计算方式和可进行汇总分析的维度。我们这里的指标主要基于以下三个指标创建:

1. 复购率:简称 RPR(Repeat Purchase Rate),指复购客户数除以活跃客户数的比例:

复购率 = 复购客户数 / 活跃客户数 * 100%

2. 复购客户数:特定时间范围内,购买次数大于 1 次的客户数量。这个指标直接反映出客户的消费能力和购买意愿,并直接影响到客户忠诚度指标。复购率越高,说明消费者对该门店 / 品牌的忠诚度越高,反之则越低。所以复购率也直接反映了消费者对门店 / 品牌的满意度。

3. 交叉购买率:复购分析,并不仅仅关注复购率。复购率关注的仅仅是单位时间内的购买次数,但商品种类可能多种多样,用户重复购买的是单一品类,还是有多种不同的商品,这就需要由交叉购买率来给出答案。交叉购买率,是指交叉销售客户数除以活跃客户数的比例:

交叉购买率 = 交叉销售客户数 / 活跃客户数 * 100%

4. 交叉销售客户数:侧重于统计客户在指定的时间范围内是否购买了不同分类的商品;这是对多样性需求进行挖掘和匹配的主要分析方法之一。

复购率指标 YAML 格式定义示例如下,我们还在其中增加了维度,这样可以通过订单日期年份、订单日期月份、门店区域以及客户姓名等维度进行聚合分析。

#复购率|Repeat Purchase Rate【复合】
  - name: Repeat Purchase Rate
    display_name: 复购率|Repeat Purchase Rate - Retail
    description: 复购率简称为RPR,按复购客户数除以活跃客户数的比例计算
    datasource: retail_stores_by_customer
    type: composite
    status: online
    measure:
      expressions: ${Repeat Purchase Customers} / ${Active Customers}
      return_type: float
      format:
        type: percentage
        decimal_place: 2
    dimensions:
      order_date_year:
        expressions: retail_stores_by_customer.order_date_year
        display_name: 订单日期年
      order_date_month:
        expressions: retail_stores_by_customer.order_date_month
        display_name: 订单日期月
      store_region:
        expressions: retail_stores_by_customer.store_region
        display_name: 门店区域
      store_city:
        expressions: retail_stores_by_customer.customer_name
        display_name: 客户姓名

接下来,我们将在Kyligence Zen 的指标页面上传 Yaml,完成指标的创建。 

 在指标目录里一键导入 YAML 指标模板(图片来自 Kyligence)

复购率指标和 Kyligence Zen 指标目录(图片来自 Kyligence)

围绕复购指标进行分析,识别回头客和复购特征

在 Kyligence Zen 平台上,我们可以直接查看单独的指标,也可以通过仪表盘看到更详尽的复购归因分析,以供决策使用。

根据对下面仪表盘的分析,我们可以看出:与 2015 年度相比,2018 年度的复购率呈现增长趋势;从月份来看,年底的活跃用户数和用户复购率都有一定增加。新零售企业的用户运营部门可以结合这些报表分析结果,进一步调整和制定有效的运营策略,助力新零售企业实现销售增长。

 指标可视化展示(图片来自 Kyligence)

用户贡献和忠诚度分析可视化仪表盘(图片来自 Kyligence)

即刻体验 Kyligence Zen

Kyligence Zen 提供了零售行业指标模板,不仅仅具备复购分析的相关指标,也同样可以便捷地分析诸多和客户忠诚度相关的信息。

文中所分析的场景已经上线 Kyligence Zen 指标集市,您可以点击访问新零售全场景复购分析指标,一键复现文中的场景,无需下载或安装任何程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值