基于高通SA8295平台下的QNN环境配置及模型转换

本文介绍了如何在高通SA8295平台上配置QNN环境,包括设置环境变量,如ANDROID_NDK_ROOT和QNN_SDK_ROOT。详细步骤涉及Tensorflow和ONNX环境的配置。此外,教程展示了如何编译CPU后台模型,以及使用QNN SDK将InceptionV3 CNN模型转换并执行,包括模型量化、生成.so文件以及执行模型并查看检测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在高通QPM creat point 网站下载 qnn dsk包、 hexagon sdk包、android ndk包等
/设置环境量

  1. 设置环境变量ANDROID_NDK_ROOT:
    $ export ANDROID_NDK_ROOT=
    export ANDROID_NDK_ROOT=/home/xxx/automotive_qnn_SDK/android-ndk-r19c-linux-x86_64/android-ndk-r19c/

  2. export QNN_SDK_ROOT=/home/xxx/automotive_qnn_SDK/qnn-v1.13.0.220510062245_36458/

  3. 设置Tensorflow运行所需要的环境变量
    source ${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/envsetup.sh -t <your_tensorflow_installation_path>
    其中<your_tensorflow_installation_path>可通过python>>import tensorflow as tf>>print(tf.path)查看
    source ${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/envsetup.sh -t /usr/local/lib/python3.6/dist-packages/tensorflow

  4. 设置onnx运行所需要的环境变量
    source ${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/envsetup.sh -o <your_onnx_installation_path>

source ${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/envsetup.sh -o /usr/local/lib/python3.6/dist-packages/onnx

  1. QNX环境变量设置
    export QNX_Toolchain_Location=/root/env_qnx/qnx710/
    export QNX_HOST= Q N X T o o l c h a i n L o c a t i o n / h o s t / l i n u x / x 8 6 6 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

工藤徐的小跟班

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值