1、首先生成xml文件,后面用于生成op_package包
${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/qnn-op-package-generator -p ${QNN_SDK_ROOT}/examples/OpPackageGenerator/ReluOpPackageCpu.xml -o ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU
2. 编译生成的oppackage
cd ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU/ReluOpPackage
cp ${QNN_SDK_ROOT}/examples/OpPackageGenerator/generated/CPU/Relu.cpp ./src/ops
export CXX=<path-to-clang++>/clang++
export ANDROID_NDK_ROOT=
cd ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU/ReluOpPackage && make cpu
3. 模型转换生成.cpp .bin .json
${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/qnn-tensorflow-converter
–input_network ${QNN_SDK_ROOT}/examples/Models/InceptionV3/tensorflow/inception_v3_2016_08_28_frozen.pb
–input_dim input 1,299,299,3
–out_node InceptionV3/Predictions/Reshape_1
–output_pa

本文详细介绍了在高通SA8295平台上,如何进行基于QNN的环境配置,包括XML文件生成、OP包编译、PyTorch模型转换为QNN模型,并通过模型量化转换生成执行所需的SO库,最后执行模型并查看目标检测结果。主要涉及深度学习模型InceptionV3的转换和运行。
最低0.47元/天 解锁文章
415

被折叠的 条评论
为什么被折叠?



