基于高通SA8295平台下的QNN环境配置及模型转换(带有自定义层的模型转换)

本文详细介绍了在高通SA8295平台上,如何进行基于QNN的环境配置,包括XML文件生成、OP包编译、PyTorch模型转换为QNN模型,并通过模型量化转换生成执行所需的SO库,最后执行模型并查看目标检测结果。主要涉及深度学习模型InceptionV3的转换和运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、首先生成xml文件,后面用于生成op_package包
${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/qnn-op-package-generator -p ${QNN_SDK_ROOT}/examples/OpPackageGenerator/ReluOpPackageCpu.xml -o ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU
2. 编译生成的oppackage
cd ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU/ReluOpPackage
cp ${QNN_SDK_ROOT}/examples/OpPackageGenerator/generated/CPU/Relu.cpp ./src/ops
export CXX=<path-to-clang++>/clang++
export ANDROID_NDK_ROOT=
cd ${QNN_SDK_ROOT}/examples/Models/InceptionV3/InceptionV3OpPackage/CPU/ReluOpPackage && make cpu
3. 模型转换生成.cpp .bin .json

${QNN_SDK_ROOT}/target/x86_64-linux-clang/bin/qnn-tensorflow-converter
–input_network ${QNN_SDK_ROOT}/examples/Models/InceptionV3/tensorflow/inception_v3_2016_08_28_frozen.pb
–input_dim input 1,299,299,3
–out_node InceptionV3/Predictions/Reshape_1
–output_pa

### Qualcomm Neural Network for Android 使用指南 #### 集成环境配置 为了在Android平台上使用Qualcomm神经网络(QNN),开发者需先安装并设置好开发环境。这包括下载和集成Snapdragon神经处理引擎(NPE) SDK,该工具包提供了必要的API接口来加速AI模型推理过程[^1]。 #### 创建QNN模型实例 通过NPE SDK可以创建用于执行DNN计算的任务对象。对于Android应用而言,通常会利用Java或Kotlin编写客户端代码,并调用JNI桥接至C++实现高性能运算逻辑。下面是一个简单的例子展示如何初始化一个QNN模型: ```cpp // C++部分:加载预训练好的TensorFlow Lite或其他框架导出的模型文件 std::shared_ptr<qnn_model> model = qnn_create_model_from_file("path/to/model.tflite"); if (!model){ throw std::runtime_error("Failed to load QNN model."); } ``` #### 执行前向传播操作 一旦成功构建了QNN模型实例之后,则可以通过输入张量数据来进行预测或者分类等任务。这里需要注意的是,在实际部署过程中可能还需要考虑量化、优化等问题以提高效率降低功耗。 ```java // Java/Kotlin部分:准备输入特征并向native方法传递参数 float[] inputFeatures = new float[]{/*...*/}; int result = nativeRunInference(inputFeatures); switch(result){ case 0: Log.d(TAG,"Success!"); break; default: Log.e(TAG,"Error occurred during inference."); } ``` #### 性能优化建议 针对移动设备的特点,采用适当的技术手段如混合精度浮点数表示法(FP16/INT8), 对于某些特定场景下的性能提升效果显著;另外也可以尝试调整batch size大小以及线程数量等超参选项进一步挖掘硬件潜力[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

工藤徐的小跟班

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值