二叉树遍历算法的应用

算法 同时被 2 个专栏收录
222 篇文章 0 订阅
3 篇文章 0 订阅

今天开始复习数据结构,感觉基础的东西一点还不会

“遍历”是二叉树各种操作的基础,通过遍历操作可以把对节点的输出延伸到对节点的判别,计数等操作,可以解决一些关于二叉树其他实际问题,如果在遍历过程生成节点,这样就能建立二叉树的存储结构。
于是就开始记录书上的基本操作。

1.先序遍历建立二叉链表
先序遍历的访问顺序是:根左右。

void CreateBiTree(BiTree &T){
	cin>>ch;
	if(ch == '#') T=NULL;
	else{
	T = new BiTNode;
	T->data = ch;
	CreateBiTree(T->lchild);
	CreateBiTree(T->rchild);
	}
}	
	

思考:上面的代码利用的是先序遍历顺序来建立节点。并且利用&引用不断连接左右子节点的方向。

2.复制二叉树
也是利用二叉树的先序遍历

void Copy(BiTree T,BiTree &NewT){
	if(T==NULL)
	{
		NewT = NULL;
		return;
		}else{
		NewT = new BiTNode;
		NewT->data = T->data;
		Copy(T->lchild,NewT->lchild);
		Copy(T->rchild,NewT->rchild);
		}
	}	

先序遍历

3.计算二叉树的深度
利用后序遍历,即访问顺序是:左右根

int Depth(BiTree T){
	if(T ==NULL)return 0;
	else{
		m = Depth(T->lchild);
		n = Depth(T->rchild);
		if(m>n)return m+1;
		else
		return n+1;

结论:利用先访问左子树,再右子树,再根的顺序。

4.统计二叉树种节点的个数
利用后序遍历顺序

int NodeCount(BiTree T){
	if(T == NULL)return 0;
	else{
	return NodeCount(T->lchild)+NodeCount(T->rchild)+1;
	}
}

结论:利用后序遍历。

最好做一题 根据先序和中序构建二叉树的题目。记下。

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值