1143 Longest Common Subsequence

160 篇文章 0 订阅
47 篇文章 0 订阅

1 题目

Given two strings text1 and text2, return the length of their longest common subsequence.

subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.

If there is no common subsequence, return 0.

Example 1:

Input: text1 = "abcde", text2 = "ace" 
Output: 3  
Explanation: The longest common subsequence is "ace" and its length is 3.

Example 2:

Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.

Example 3:

Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.

2 尝试解

2.1 分析

给定两个字符串A和B,求两个字符串的最长公共子序列的长度。

计A的长度和B的长度分别为m和n。考虑A[m]和B[n]:

A[m] == B[n],则存在一个最长公共子序列,A[m]和B[n]在其中。证明:如果A[m]和B[n]都不在最长公共子序列中,可以添加进去,子序列还可以再延长,矛盾。所以A[m]和B[n]至少有一个在其中。如果A[m]在其中,而B[n]不在,可以用B[n]替代B中最长公共子序列的末尾,同理,A[m]不在其中,而B[n]在其中,也可用A[m]替换,证明完毕。所以问题转化为寻找A[m-1]和B[n-1]的最长公共子序列,再分别加上A[m]和B[n]。

A[m] != B[n],如果A[m]和B[n]都不在任何最长公共子序列中,则直接删去无影响。如果A[m]在最长公共子序列中,那么说明存在k<n,A[m] = B[k]。由于公共子序列以B[k]结尾,删除其后的元素无影响,所以问题转化为求A[:m]和B[:n-1]的最长公共子序列。如果B[n]在最长公共子序列中,问题转化为A[:m-1]和B[:]的最长公共子序列。

用F(m,n)表示字符串A[:m]和B[:n]的最长公共子序列的长度,则

A[m] == B[n]  F(m,n) = F(m-1,n-1)+1

A[m] != B[n] F(m,n) = max(F(m-1,n) , F(m,n-1))

2.2 代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        if(!text1.size()||!text2.size()) return 0;
        vector<vector<int>> record(text1.size(),vector<int>(text2.size(),0));
        for(int i = 0; i < text1.size(); i++){
            for(int j = 0; j < text2.size(); j++){
                if(text1[i]==text2[j]){
                    record[i][j] = (i>0&&j>0?record[i-1][j-1]:0)+1;
                }
                else{
                    record[i][j] = max((i>0?record[i-1][j]:0),(j>0?record[i][j-1]:0));
                }
            }
        }
        return record.back().back();
    }
};

3 标准解

3.1 分析

动态规划示意图

3.2 代码

class Solution {
public:
    int longestCommonSubsequence(string &a, string &b) {
      vector<vector<short>> m(a.size() + 1, vector<short>(b.size() + 1));
      for (auto i = 1; i <= a.size(); ++i)
        for (auto j = 1; j <= b.size(); ++j)
          if (a[i - 1] == b[j - 1]) m[i][j] = m[i - 1][j - 1] + 1;
          else m[i][j] = max(m[i - 1][j], m[i][j - 1]);
      return m[a.size()][b.size()];
    }
};

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 最长公共子序列(Longest Common Subsequence)指的是在两个序列中找到最长的公共子序列,这个公共子序列可以不连续,但是需要保持相对顺序不变。例如,对于序列ABCD和ACDFG,它们的最长公共子序列是ACD。 ### 回答2: 最长公共子序列(Longest Common Subsequence,简称LCS)是指在给定多个序列中,找到最长的一个子序列,该子序列同时出现在这些序列中,并且其他元素的相对顺序保持一致。 举个例子,假设有两个序列A和B,A为[1, 2, 3, 4, 5],B为[2, 4, 5, 6]。它们的一个最长公共子序列是[2, 4, 5],该子序列同时存在于A和B中。 求解LCS的问题可以用动态规划的方法来解决。我们可以构建一个二维数组dp,其中dp[i][j]表示序列A的前i个元素和序列B的前j个元素的LCS长度。那么dp[i][j]可以通过以下方式得到: 1. 如果A[i]等于B[j],则dp[i][j]等于dp[i-1][j-1] + 1; 2. 如果A[i]不等于B[j],则dp[i][j]等于max(dp[i-1][j], dp[i][j-1])。 通过填充整个dp数组,最终可以得到序列A和序列B的LCS长度。要找到具体的LCS序列,则可以通过反向遍历dp数组进行构建。 LCS问题在字符串处理、DNA序列匹配、版本控制等领域都有广泛的应用。其时间复杂度为O(m*n),其中m和n分别为序列A和序列B的长度。 ### 回答3: 最长公共子序列(Longest Common Subsequence)是一个经典的计算机科学问题。给定两个序列S和T,我们要找出它们之间最长的公共子序列。 子序列是从给定序列中按顺序选择几个元素而组成的序列。而公共子序列指的是同时是序列S和T的子序列的序列。 为了解决这个问题,可以使用动态规划的方法。我们可以定义一个二维数组dp,其中dp[i][j]表示序列S的前i个元素和序列T的前j个元素之间的最长公共子序列的长度。 接下来,我们可以使用以下递推关系来填充dp数组: 如果S[i]等于T[j],则dp[i][j] = dp[i-1][j-1] + 1; 如果S[i]不等于T[j],则dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,我们可以通过查看dp[S.length()][T.length()]来得到最长公共子序列的长度。 此外,我们也可以用回溯法来还原最长公共子序列本身。我们可以从dp[S.length()][T.length()]开始,如果S[i]等于T[j],则将S[i]添加到结果序列中,并向左上方移动,即i = i-1,j = j-1。如果S[i]不等于T[j],则根据dp数组的值选择向上(i = i-1)或向左(j = j-1)移动。 总之,最长公共子序列问题是一个经典的计算机科学问题,可以使用动态规划的方法解决。我们可以通过构建二维dp数组来计算最长公共子序列的长度,并可以使用回溯法来还原它本身。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值