棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 50501 | Accepted: 24473 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
Source
蔡错@pku
用DFS强行将所有摆放的可能都试一遍,就可以知道有几个方案是可行的了。
用DFS强行将所有摆放的可能都试一遍,就可以知道有几个方案是可行的了。
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = 8;
int chess[maxn][maxn];
int cnt,visitr[maxn];
void erase()
{
for (int i = 0; i < maxn; i++)
{
visitr[i] = 0;
for (int j = 0; j < maxn; j++)
{
chess[i][j] = 0;
}
}
}
int DFS(int i,int n,int k)
{
if (!k) return cnt++;
for (; i < n; i++)
{
for (int j=0; j < n; j++)
{
if (!chess[i][j]||visitr[j]) continue;
visitr[j] = 1;
DFS(i + 1,n, k-1);
visitr[j] = 0;
}
}
return cnt;
}
int main()
{
int n, k;
char ch;
while (cin>>n>>k&&n!=-1)
{
erase();
cnt = 0;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cin >> ch;
if (ch == '#') chess[i][j] = 1;
}
}
printf("%d\n",DFS(0, n, k));
}
return 0;
}