棋盘问题(POJ1321)

棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 50501 Accepted: 24473

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

Source

蔡错@pku

 用DFS强行将所有摆放的可能都试一遍,就可以知道有几个方案是可行的了。

#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = 8;
int chess[maxn][maxn];
int cnt,visitr[maxn];

void erase()
{
	for (int i = 0; i < maxn; i++)
	{
		visitr[i] = 0;
		for (int j = 0; j < maxn; j++)
		{
			chess[i][j] = 0;
		}
	}
}
int DFS(int i,int n,int k)
{
	if (!k) return cnt++;
	for (; i < n; i++)
	{
		for (int j=0; j < n; j++)
		{
			if (!chess[i][j]||visitr[j]) continue;
					visitr[j] = 1;
					DFS(i + 1,n, k-1);
					visitr[j] = 0;
		}
	}
	return cnt;
}
int main()
{
	int n, k;
	char ch;
	while (cin>>n>>k&&n!=-1)
	{
		erase();
		cnt = 0;
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				cin >> ch;
				if (ch == '#') chess[i][j] = 1;
			}
		}
		printf("%d\n",DFS(0, n, k));
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值