Google---机器学习速成课程(六)- 表示 (Representation)

机器学习模型不能直接看到、听到或感知输入样本。所以我们必须创建数据表示,为模型提供有用的信号来了解数据的关键特性。也就是说,为了训练模型,您必须选择最能代表数据的特征集。

学习目标

  • 将日志和 Protocol Buffer 中的字段映射到实用的机器学习特征。
  • 判断哪些特性可用作合适的特征。
  • 处理离群值特征。
  • 调查数据集的统计属性。
  • 使用 tf.estimator 训练并评估模型。

-----------------------------------------------------

表示 (Representation):特征工程

传统编程的关注点是代码。在机器学习项目中,关注点变成了表示。也就是说,开发者通过添加和改善特征来调整模型。

将原始数据映射到特征

图 1 左侧表示来自输入数据源的原始数据,右侧表示特征矢量,也就是组成数据集中样本的浮点值集。特征工程指的是将原始数据转换为特征矢量。进行特征工程预计需要大量时间。

机器学习模型通常期望样本表示为实数矢量。这种矢量的构建方法如下:为每个字段衍生特征,然后将它们全部连接到一起。


图 1 特征工程将原始数据映射到机器学习特征

映射数值

机器学习模型根据浮点值进行训练,因此整数和浮点原始数据不需要特殊编码。正如图 2 所示,将原始整数值 6 转换为特征值 6.0 是没有意义的:


图 2 将整数值映射到浮点值

映射字符串值

模型无法通过字符串值学习规律,因此您需要进行一些特征工程来将这些值转换为数字形式:

  1. 首先,要为表示的所有特征的字符串值定义一个词汇表。对于 street_name 特征,该词汇表中将包含您知道的所有街道。

  2. 然后,使用该词汇表创建一个独热编码,用于将指定字符串值表示为一个二元矢量。在该矢量(与指定的字符串值对应)中:

    • 只有一个元素设为 1
    • 其他所有元素均设为 0

    该矢量的长度等于词汇表中的元素数。

图 3 显示了某条特定街道 (Shorebird Way) 的独热编码。在此二元矢量中,代表 Shorebird Way 的元素的值为 1,而代表所有其他街道的元素的值为 0

图 3. 通过独热编码映射字符串值

映射分类(枚举)值

分类特征具有一组离散的可能值。例如,名为 Lowland Countries 的特征只包含 3 个可能值:

 
{'Netherlands', 'Belgium', 'Luxembourg'}

您可能会将分类特征(如 Lowland Countries)编码为枚举类型或表示不同值的整数离散集。例如:

  • 将荷兰表示为 0
  • 将比利时表示为 1
  • 将卢森堡表示为 2

不过,机器学习模型通常将每个分类特征表示为单独的布尔值。例如,Lowland Countries 在模型中可以表示为 3 个单独的布尔值特征:

  • x1:是荷兰吗?
  • x2:是比利时吗?
  • x3:是卢森堡吗?

采用这种方法编码还可以简化某个值可能属于多个分类这种情况(例如,“与法国接壤”对于比利时和卢森堡来说都是 True)。

-----------------------------------------------------

良好特征的特点

我们探索了将原始数据映射到合适特征矢量的方法,但这只是工作的一部分。现在,我们必须探索什么样的值才算这些特征矢量中良好的特征。

  • 避免很少使用的离散特征值

良好的特征值应该在数据集中出现大约 5 次以上。这样一来,模型就可以学习该特征值与标签是如何关联的。也就是说,大量离散值相同的样本可让模型有机会了解不同设置中的特征,从而判断何时可以对标签很好地做出预测。相反,如果某个特征的值仅出现一次或者很少出现,则模型就无法根据该特征进行预测。

  • 最好具有清晰明确的含义

每个特征对于项目中的任何人来说都应该具有清晰明确的含义。相反,对于不清晰的特征值的含义,除了创建数据的人,其他人恐怕辨识不出。而在某些情况下,混乱的数据(而不是糟糕的工程选择)会导致含义不清晰的值。

  • 不要将“神奇”的值与实际数据混为一谈

良好的浮点特征不包含超出范围的异常断点或“神奇”的值。

  • 考虑上游不稳定性

特征的定义不应随时间发生变化。

-----------------------------------------------------

清理数据

  • 缩放特征值

    缩放是指将浮点特征值从自然范围(例如 100 到 900)转换为标准范围(例如 0 到 1 或 -1 到 +1)。

如果某个特征集只包含一个特征,则缩放可以提供的实际好处微乎其微或根本没有。不过,如果特征集包含多个特征,则缩放特征可以带来以下优势:

  • 帮助梯度下降法更快速地收敛。
  • 帮助避免“NaN 陷阱”。在这种陷阱中,模型中的一个数值变成 NaN(例如,当某个值在训练期间超出浮点精确率限制时),并且模型中的所有其他数值最终也会因数学运算而变成 NaN。
  • 帮助模型为每个特征确定合适的权重。如果没有进行特征缩放,则模型会对范围较大的特征投入过多精力。

    我们不需要对每个浮点特征进行完全相同的缩放。即使特征 A 的范围是 -1 到 +1,同时特征 B 的范围是 -3 到 +3,也不会产生什么恶劣的影响。不过,若特征 B 的范围是 5000 到 100000,模型会出现糟糕的影响。

    要缩放数字数据,一种显而易见的方法是将 [最小值,最大值] 以线性方式映射到较小的范围,例如 [-1,+1]。

另一种热门的缩放策略是计算每个值的 Z 得分。Z 得分与距离均值的标准偏差数相关。换而言之:

scaledvalue=(value−mean)/stddev.

例如,给定以下条件:

  • 均值 = 100
  • 标准偏差 = 20
  • 原始值 = 130

则:

  scaled_value = (130 - 100) / 20
  scaled_value = 1.5

    使用 Z 得分进行缩放意味着,大多数缩放后的值将介于 -3 和 +3 之间,而少量值将略高于或低于该范围。

  • 处理极端离群值

    下面的曲线图表示的是加利福尼亚州住房数据集中称为 roomsPerPerson 的特征。roomsPerPerson值的计算方法是相应地区的房间总数除以相应地区的人口总数。该曲线图显示,在加利福尼亚州的绝大部分地区,人均房间数为 1 到 2 间。不过,请看一下 x 轴。


图 4 有一个非常非常长的尾巴

    如何最大限度降低这些极端离群值的影响?一种方法是对每个值取对数


图 5 取对数以后仍然会有尾巴

    对数缩放可稍稍缓解这种影响,但仍然存在离群值这个大尾巴。

   我们来采用另一种方法。如果我们只是简单地将 roomsPerPerson 的最大值“限制”为某个任意值(比如 4.0),会发生什么情况呢?

图 6. 将特征值限制到 4.0

    将特征值限制到 4.0 并不意味着我们会忽略所有大于 4.0 的值。而是说,所有大于 4.0 的值都将变成 4.0。这就解释了 4.0 处的那个有趣的小峰值。尽管存在这个小峰值,但是缩放后的特征集现在依然比原始数据有用。

  • 分箱

    下面的曲线图显示了加利福尼亚州不同纬度的房屋相对普及率。注意集群 - 洛杉矶大致在纬度 34 处,旧金山大致在纬度 38 处。

图 7. 每个纬度的房屋数。

    在数据集中,latitude 是一个浮点值。不过,在我们的模型中将 latitude 表示为浮点特征没有意义。这是因为纬度和房屋价值之间不存在线性关系。例如,纬度 35 处的房屋并不比纬度 34 处的房屋贵 35/34(或更便宜)。但是,纬度或许能很好地预测房屋价值。

    为了将纬度变为一项实用的预测指标,我们对纬度“分箱”,如下图所示:


图 8. 分箱值

    我们现在拥有 11 个不同的布尔值特征(LatitudeBin1LatitudeBin2、…、LatitudeBin11),而不是一个浮点特征。拥有 11 个不同的特征有点不方便,因此我们将它们统一成一个 11 元素矢量。这样做之后,我们可以将纬度 37.4 表示为:

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

    分箱之后,我们的模型现在可以为每个纬度学习完全不同的权重。

(为了简单起见,我们在纬度样本中使用整数作为分箱边界。如果我们需要更精细的解决方案,我们可以每隔 1/10 个纬度拆分一次分箱边界。添加更多箱可让模型从纬度 37.4 处学习和维度 37.5 处不一样的行为,但前提是每 1/10 个纬度均有充足的样本可供学习。

    另一种方法是按分位数分箱,这种方法可以确保每个桶内的样本数量是相等的。按分位数分箱完全无需担心离群值。)

  • 清查

    截至目前,我们假定用于训练和测试的所有数据都是值得信赖的。在现实生活中,数据集中的很多样本是不可靠的,原因有以下一种或多种:

  • 遗漏值。 例如,有人忘记为某个房屋的年龄输入值。
  • 重复样本。 例如,服务器错误地将同一条记录上传了两次。
  • 不良标签。 例如,有人错误地将一颗橡树的图片标记为枫树。
  • 不良特征值。 例如,有人输入了多余的位数,或者温度计被遗落在太阳底下。

    一旦检测到存在这些问题,您通常需要将相应样本从数据集中移除,从而“修正”不良样本。要检测遗漏值或重复样本,您可以编写一个简单的程序。检测不良特征值或标签可能会比较棘手。

    除了检测各个不良样本之外,您还必须检测集合中的不良数据。直方图是一种用于可视化集合中数据的很好机制。此外,收集如下统计信息也会有所帮助:

  • 最大值和最小值
  • 均值和中间值
  • 标准偏差

   考虑生成离散特征的最常见值列表。例如,country:uk 的样本数是否符合您的预期?language:jp是否真的应该作为您数据集中的最常用语言?

  • 了解数据

遵循以下规则:

  • 记住您预期的数据状态。
  • 确认数据是否满足这些预期(或者您可以解释为何数据不满足预期)。
  • 仔细检查训练数据是否与其他来源(例如信息中心)的数据一致。

像处理任何任务关键型代码一样谨慎处理您的数据。良好的机器学习依赖于良好的数据。

-----------------------------------------------------

编程练习点击打开链接

-------------------------------------------------------

以上整理转载在谷歌出品的机器学习速成课程点击打开链接 侵删!










  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值