【西瓜书笔记】9. EM算法(下)

接上一篇

Q ( θ ∣ θ ( i ) ) = ∑ j = 1 N { μ j ( i + 1 ) ln ⁡ [ π p y j ( 1 − p ) 1 − y j ] + ( 1 − μ j ( i + 1 ) ) ln ⁡ [ ( 1 − π ) q y j ( 1 − q ) 1 − y j ] } Q\left(\theta \mid \theta^{(i)}\right)=\sum_{j=1}^{N}\left\{\mu_{j}^{(i+1)} \ln \left[\pi p^{y_{j}}(1-p)^{1-y_{j}}\right]+\left(1-\mu_{j}^{(i+1)}\right) \ln \left[(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}\right]\right\} Q(θθ(i))=j=1N{μj(i+1)ln[πpyj(1p)1yj]+(1μj(i+1))ln[(1π)qyj(1q)1yj]}

现在有了Q函数,我们可以进一步做M步:求使得Q函数达到极大的 θ ( i + 1 ) = ( π ( i + 1 ) , p ( i + 1 ) , q ( i + 1 ) ) \theta^{(i+1)}=\left(\pi^{(i+1)}, p^{(i+1)}, q^{(i+1)}\right) θ(i+1)=(π(i+1),p(i+1),q(i+1))。我们对Q函数关于 π \pi π求一阶偏导数,并令一阶偏导数等于0

∂ Q ( θ ∣ θ ( i ) ) ∂ π = ∑ j = 1 N ∂ ∂ π { μ j ( i + 1 ) ln ⁡ [ π p y j ( 1 − p ) 1 − y j ] + ( 1 − μ j ( i + 1 ) ) ln ⁡ [ ( 1 − π ) q y j ( 1 − q ) 1 − y j ] } = ∑ j = 1 N { μ j ( i + 1 ) p y j ( 1 − p ) 1 − y j π p y j ( 1 − p ) 1 − y j + ( 1 − μ j ( i + 1 ) ) − q y j ( 1 − q ) 1 − y j ( 1 − π ) q y j ( 1 − q ) 1 − y j } = ∑ j = 1 N { μ j ( i + 1 ) ( 1 − π ) p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j π ( 1 − π ) p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j + ( μ j ( i + 1 ) − 1 ) π p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j π ( 1 − π ) p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j } = ∑ j = 1 N { μ j ( i + 1 ) p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j − π p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j π ( 1 − π ) p y j ( 1 − p ) 1 − y j q y j ( 1 − q ) 1 − y j } = ∑ j = 1 N [ μ j ( i + 1 ) − π π ( 1 − π ) ] = ∑ j = 1 N μ j ( i + 1 ) − ∑ j = 1 N π π ( 1 − π ) = ∑ j = 1 N μ j ( i + 1 ) − N π π ( 1 − π ) \begin{aligned} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial \pi} &=\sum_{j=1}^{N} \frac{\partial}{\partial \pi}\left\{\mu_{j}^{(i+1)} \ln \left[\pi p^{y_{j}}(1-p)^{1-y_{j}}\right]+\left(1-\mu_{j}^{(i+1)}\right) \ln \left[(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}\right]\right\} \\ &=\sum_{j=1}^{N}\left\{\mu_{j}^{(i+1)} \frac{p^{y_{j}}(1-p)^{1-y_{j}}}{\pi p^{y_{j}}(1-p)^{1-y_{j}}}+\left(1-\mu_{j}^{(i+1)}\right) \frac{-q^{y_{j}}(1-q)^{1-y_{j}}}{(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}}\right\} \\ &=\sum_{j=1}^{N}\left\{\frac{\mu_{j}^{(i+1)}(1-\pi) p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}{\pi(1-\pi) p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}+\frac{\left(\mu_{j}^{(i+1)}-1\right) \pi p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}{\pi(1-\pi) p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}\right\}\\ &=\sum_{j=1}^{N}\left\{\frac{\mu_{j}^{(i+1)} p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}-\pi p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}{\pi(1-\pi) p^{y_{j}}(1-p)^{1-y_{j}} q^{y_{j}}(1-q)^{1-y_{j}}}\right\} \\ &=\sum_{j=1}^{N}\left[\frac{\mu_{j}^{(i+1)}-\pi}{\pi(1-\pi)}\right] \\ &=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}-\sum_{j=1}^{N} \pi}{\pi(1-\pi)} \\ &=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}-N \pi}{\pi(1-\pi)} \end{aligned} πQ(θθ(i))=j=1Nπ{μj(i+1)ln[πpyj(1p)1yj]+(1μj(i+1))ln[(1π)qyj(1q)1yj]}=j=1N{μj(i+1)πpyj(1p)1yjpyj(1p)1yj+(1μj(i+1))(1π)qyj(1q)1yjqyj(1q)1yj}=j=1Nπ(1π)pyj(1p)1yjqyj(1q)1yjμj(i+1)(1π)pyj(1p)1yjqyj(1q)1yj+π(1π)pyj(1p)1yjqyj(1q)1yj(μj(i+1)1)πpyj(1p)1yjqyj(1q)1yj=j=1N{π(1π)pyj(1p)1yjqyj(1q)1yjμj(i+1)pyj(1p)1yjqyj(1q)1yjπpyj(1p)1yjqyj(1q)1yj}=j=1N[π(1π)μj(i+1)π]=π(1π)j=1Nμj(i+1)j=1Nπ=π(1π)j=1Nμj(i+1)Nπ
所以

∂ Q ( θ ∣ θ ( i ) ) ∂ π = ∑ j = 1 N μ j ( i + 1 ) − N π π ( 1 − π ) = 0 ∑ j = 1 N μ j ( i + 1 ) − N π = 0 N π = ∑ j = 1 N μ j ( i + 1 ) π = 1 N ∑ j = 1 N μ j ( i + 1 ) ⇒ π ( i + 1 ) = 1 N ∑ j = 1 N μ j ( i + 1 ) \begin{gathered} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial \pi}=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}-N \pi}{\pi(1-\pi)}=0 \\ \sum_{j=1}^{N} \mu_{j}^{(i+1)}-N \pi=0 \\ N \pi=\sum_{j=1}^{N} \mu_{j}^{(i+1)} \\ \pi=\frac{1}{N} \sum_{j=1}^{N} \mu_{j}^{(i+1)} \Rightarrow \pi^{(i+1)}=\frac{1}{N} \sum_{j=1}^{N} \mu_{j}^{(i+1)} \end{gathered} πQ(θθ(i))=π(1π)j=1Nμj(i+1)Nπ=0j=1Nμj(i+1)Nπ=0Nπ=j=1Nμj(i+1)π=N1j=1Nμj(i+1)π(i+1)=N1j=1Nμj(i+1)
对Q函数关于p求偏导

∂ Q ( θ ∣ θ ( i ) ) ∂ p = ∑ j = 1 N ∂ ∂ p { μ j ( i + 1 ) ln ⁡ [ π p y j ( 1 − p ) 1 − y j ] + ( 1 − μ j ( i + 1 ) ) ln ⁡ [ ( 1 − π ) q y j ( 1 − q ) 1 − y j ] } = ∑ j = 1 N ∂ ∂ p { μ j ( i + 1 ) ln ⁡ [ π p y j ( 1 − p ) 1 − y j ] } = ∑ j = 1 N ∂ ∂ p { μ j ( i + 1 ) [ ln ⁡ π + y j ln ⁡ p + ( 1 − y j ) ln ⁡ ( 1 − p ) ] } = ∑ j = 1 N ∂ ∂ p { μ j ( i + 1 ) ln ⁡ π + μ j ( i + 1 ) y j ln ⁡ p + μ j ( i + 1 ) ( 1 − y j ) ln ⁡ ( 1 − p ) } = ∑ j = 1 N ∂ ∂ p { μ j ( i + 1 ) y j ln ⁡ p + μ j ( i + 1 ) ( 1 − y j ) ln ⁡ ( 1 − p ) } = ∑ j = 1 N { μ j ( i + 1 ) y j p + ( − 1 ) ⋅ μ j ( i + 1 ) ( 1 − y j ) ( 1 − p ) } = ∑ j = 1 N μ j ( i + 1 ) y j p − ∑ j = 1 N μ j ( i + 1 ) ( 1 − y j ) ( 1 − p ) = ∑ j = 1 N μ j ( i + 1 ) y j p − ∑ j = 1 N μ j ( i + 1 ) ( 1 − y j ) ( 1 − p ) \begin{aligned} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial p} &=\sum_{j=1}^{N} \frac{\partial}{\partial p}\left\{\mu_{j}^{(i+1)} \ln \left[\pi p^{y_{j}}(1-p)^{1-y_{j}}\right]+\left(1-\mu_{j}^{(i+1)}\right) \ln \left[(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial p}\left\{\mu_{j}^{(i+1)} \ln \left[\pi p^{y_{j}}(1-p)^{1-y_{j}}\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial p}\left\{\mu_{j}^{(i+1)}\left[\ln \pi+y_{j} \ln p+\left(1-y_{j}\right) \ln (1-p)\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial p}\left\{\mu_{j}^{(i+1)} \ln \pi+\mu_{j}^{(i+1)} y_{j} \ln p+\mu_{j}^{(i+1)}\left(1-y_{j}\right) \ln (1-p)\right\}\\ &=\sum_{j=1}^{N} \frac{\partial}{\partial p}\left\{\mu_{j}^{(i+1)} y_{j} \ln p+\mu_{j}^{(i+1)}\left(1-y_{j}\right) \ln (1-p)\right\} \\ &=\sum_{j=1}^{N}\left\{\frac{\mu_{j}^{(i+1)} y_{j}}{p}+\frac{(-1) \cdot \mu_{j}^{(i+1)}\left(1-y_{j}\right)}{(1-p)}\right\} \\ &=\sum_{j=1}^{N} \frac{\mu_{j}^{(i+1)} y_{j}}{p}-\sum_{j=1}^{N} \frac{\mu_{j}^{(i+1)}\left(1-y_{j}\right)}{(1-p)} \\ &=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}}{p}-\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}\left(1-y_{j}\right)}{(1-p)} \end{aligned} pQ(θθ(i))=j=1Np{μj(i+1)ln[πpyj(1p)1yj]+(1μj(i+1))ln[(1π)qyj(1q)1yj]}=j=1Np{μj(i+1)ln[πpyj(1p)1yj]}=j=1Np{μj(i+1)[lnπ+yjlnp+(1yj)ln(1p)]}=j=1Np{μj(i+1)lnπ+μj(i+1)yjlnp+μj(i+1)(1yj)ln(1p)}=j=1Np{μj(i+1)yjlnp+μj(i+1)(1yj)ln(1p)}=j=1N{pμj(i+1)yj+(1p)(1)μj(i+1)(1yj)}=j=1Npμj(i+1)yjj=1N(1p)μj(i+1)(1yj)=pj=1Nμj(i+1)yj(1p)j=1Nμj(i+1)(1yj)

等于0有

∂ Q ( θ ∣ θ ( i ) ) ∂ p = ∑ j = 1 N μ j ( i + 1 ) y j p − ∑ j = 1 N μ j ( i + 1 ) ( 1 − y j ) ( 1 − p ) = 0 ∑ j = 1 N μ j ( i + 1 ) y j p = ∑ j = 1 N μ j ( i + 1 ) ( 1 − y j ) ( 1 − p ) ( 1 − p ) ∑ j = 1 N μ j ( i + 1 ) y j = p ∑ j = 1 N μ j ( i + 1 ) ( 1 − y j ) ∑ j = 1 N μ j ( i + 1 ) y j − p ∑ j = 1 N μ j ( i + 1 ) y j = p ∑ j = 1 N μ j ( i + 1 ) − p ∑ j = 1 N μ j ( i + 1 ) y j ∑ j = 1 N μ j ( i + 1 ) y j = p ∑ j = 1 N μ j ( i + 1 ) p = ∑ j = 1 N μ j ( i + 1 ) y j ∑ j = 1 N μ j ( i + 1 ) ⇒ p ( i + 1 ) = ∑ j = 1 N μ j ( i + 1 ) y j ∑ j = 1 N μ j ( i + 1 ) \begin{gathered} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial p}=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}}{p}-\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}\left(1-y_{j}\right)}{(1-p)}=0 \\ \frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}}{p}=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)}\left(1-y_{j}\right)}{(1-p)} \\ (1-p) \sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}=p \sum_{j=1}^{N} \mu_{j}^{(i+1)}\left(1-y_{j}\right)\\ \sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}-p \sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}=p \sum_{j=1}^{N} \mu_{j}^{(i+1)}-p \sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}\\ \sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}=p \sum_{j=1}^{N} \mu_{j}^{(i+1)}\\ p=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}}{\sum_{j=1}^{N} \mu_{j}^{(i+1)} }\Rightarrow p^{(i+1)}=\frac{\sum_{j=1}^{N} \mu_{j}^{(i+1)} y_{j}}{\sum_{j=1}^{N} \mu_{j}^{(i+1)}} \end{gathered} pQ(θθ(i))=pj=1Nμj(i+1)yj(1p)j=1Nμj(i+1)(1yj)=0pj=1Nμj(i+1)yj=(1p)j=1Nμj(i+1)(1yj)(1p)j=1Nμj(i+1)yj=pj=1Nμj(i+1)(1yj)j=1Nμj(i+1)yjpj=1Nμj(i+1)yj=pj=1Nμj(i+1)pj=1Nμj(i+1)yjj=1Nμj(i+1)yj=pj=1Nμj(i+1)p=j=1Nμj(i+1)j=1Nμj(i+1)yjp(i+1)=j=1Nμj(i+1)j=1Nμj(i+1)yj
此即为式9.7

对Q函数关于q求导,并令一阶导等于0:
∂ Q ( θ ∣ θ ( i ) ) ∂ q = ∑ j = 1 N ∂ ∂ q { μ j ( i + 1 ) ln ⁡ [ π p y j ( 1 − p ) 1 − y j ] + ( 1 − μ j ( i + 1 ) ) ln ⁡ [ ( 1 − π ) q y j ( 1 − q ) 1 − y j ] } = ∑ j = 1 N ∂ ∂ q { ( 1 − μ j ( i + 1 ) ) ln ⁡ [ ( 1 − π ) q y j ( 1 − q ) 1 − y j ] } = ∑ j = 1 N ∂ ∂ q { ( 1 − μ j ( i + 1 ) ) [ ln ⁡ ( 1 − π ) + y j ln ⁡ q + ( 1 − y j ) ln ⁡ ( 1 − q ) ] } = ∑ j = 1 N ∂ ∂ q { ( 1 − μ j ( i + 1 ) ) ln ⁡ ( 1 − π ) + ( 1 − μ j ( i + 1 ) ) y j ln ⁡ q + ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ln ⁡ ( 1 − q ) } = ∑ j = 1 N ∂ ∂ q { ( 1 − μ j ( i + 1 ) ) y j ln ⁡ q + ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ln ⁡ ( 1 − q ) } = ∑ j = 1 N { ( 1 − μ j ( i + 1 ) ) y j q + ( − 1 ) ⋅ ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ( 1 − q ) } = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j q − ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ( 1 − q ) = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j q − ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ( 1 − q ) \begin{aligned} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial q} &=\sum_{j=1}^{N} \frac{\partial}{\partial q}\left\{\mu_{j}^{(i+1)} \ln \left[\pi p^{y_{j}}(1-p)^{1-y_{j}}\right]+\left(1-\mu_{j}^{(i+1)}\right) \ln \left[(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial q}\left\{\left(1-\mu_{j}^{(i+1)}\right) \ln \left[(1-\pi) q^{y_{j}}(1-q)^{1-y_{j}}\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial q}\left\{\left(1-\mu_{j}^{(i+1)}\right)\left[\ln (1-\pi)+y_{j} \ln q+\left(1-y_{j}\right) \ln (1-q)\right]\right\} \\ &=\sum_{j=1}^{N} \frac{\partial}{\partial q}\left\{\left(1-\mu_{j}^{(i+1)}\right) \ln (1-\pi)+\left(1-\mu_{j}^{(i+1)}\right) y_{j} \ln q+\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right) \ln (1-q)\right\}\\ &=\sum_{j=1}^{N} \frac{\partial}{\partial q}\left\{\left(1-\mu_{j}^{(i+1)}\right) y_{j} \ln q+\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right) \ln (1-q)\right\} \\ &=\sum_{j=1}^{N}\left\{\frac{\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{q}+\frac{(-1) \cdot\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right)}{(1-q)}\right\} \\ &=\sum_{j=1}^{N} \frac{\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{q}-\sum_{j=1}^{N} \frac{\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right)}{(1-q)} \\ &=\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{q}-\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right)}{(1-q)} \end{aligned} qQ(θθ(i))=j=1Nq{μj(i+1)ln[πpyj(1p)1yj]+(1μj(i+1))ln[(1π)qyj(1q)1yj]}=j=1Nq{(1μj(i+1))ln[(1π)qyj(1q)1yj]}=j=1Nq{(1μj(i+1))[ln(1π)+yjlnq+(1yj)ln(1q)]}=j=1Nq{(1μj(i+1))ln(1π)+(1μj(i+1))yjlnq+(1μj(i+1))(1yj)ln(1q)}=j=1Nq{(1μj(i+1))yjlnq+(1μj(i+1))(1yj)ln(1q)}=j=1Nq(1μj(i+1))yj+(1q)(1)(1μj(i+1))(1yj)=j=1Nq(1μj(i+1))yjj=1N(1q)(1μj(i+1))(1yj)=qj=1N(1μj(i+1))yj(1q)j=1N(1μj(i+1))(1yj)

所以
∂ Q ( θ ∣ θ ( i ) ) ∂ q = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j q − ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ( 1 − q ) = 0 ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j q = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ( 1 − q ) ( 1 − q ) ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j = q ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ( 1 − y j ) ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j − q ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j = q ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) − q ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j = q ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) q = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) ⇒ q ( i + 1 ) = ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) y j ∑ j = 1 N ( 1 − μ j ( i + 1 ) ) \begin{gathered} \frac{\partial Q\left(\theta \mid \theta^{(i)}\right)}{\partial q}=\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{q}-\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right)}{(1-q)}=0 \\ \frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{q}=\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right)}{(1-q)} \\ (1-q) \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}=q \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)\left(1-y_{j}\right) \\ \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}-q \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}=q \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)-q \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}\\ \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}=q \sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) \\ q=\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)} \Rightarrow q^{(i+1)}=\frac{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right) y_{j}}{\sum_{j=1}^{N}\left(1-\mu_{j}^{(i+1)}\right)} \end{gathered} qQ(θθ(i))=qj=1N(1μj(i+1))yj(1q)j=1N(1μj(i+1))(1yj)=0qj=1N(1μj(i+1))yj=(1q)j=1N(1μj(i+1))(1yj)(1q)j=1N(1μj(i+1))yj=qj=1N(1μj(i+1))(1yj)j=1N(1μj(i+1))yjqj=1N(1μj(i+1))yj=qj=1N(1μj(i+1))qj=1N(1μj(i+1))yjj=1N(1μj(i+1))yj=qj=1N(1μj(i+1))q=j=1N(1μj(i+1))j=1N(1μj(i+1))yjq(i+1)=j=1N(1μj(i+1))j=1N(1μj(i+1))yj
此即为式9.8。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值