智能反射面(IRS, RIS)代码集合

之前有许多读者提到,刚接触这个领域,希望有一些公开的代码可供学习参考。 这里向大家推荐一下 ken0225 收集的 IRS目前已公开的代码集合, 还在持续更新中。

附传送门:
IRS代码集合

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
### 半正定规划 (SDP) 在凸优化 CVX 中应用于智能反射面 (IRS/RIS) #### 应用背景 在智能反射面增强型无线网络中,半正定松弛(Semidefinite Relaxation, SDR)是一种常用的优化技术。这种方法能够有效地解决非凸问题,并提供接近最优解的结果[^1]。 #### 方法概述 为了利用CVX工具箱求解涉及IRS的最优化问题,通常会经历以下几个方面: - **构建目标函数**:定义需要最小化或最大化的表达式。 - **设置约束条件**:包括但不限于发射功率限制、IRS相位调整范围等物理特性带来的边界条件。 - **转换为标准形式**:将原始问题转化为适合于SDP处理的形式,这可能涉及到变量替换或其他数学变换技巧。 - **调用CVX求解器**:编写MATLAB脚本并通过CVX接口提交给求解器计算最佳解决方案。 #### 实例展示 下面是一个简单的例子,展示了如何使用CVX来实现基于SDR的方法来进行IRS辅助下的波束形成设计。假设我们有一个单用户场景,其中基站配备有\(N\)根天线,而IRS上有\(M\)个单元用于调节信号路径。 ```matlab % 参数初始化 N = 8; % 基站天线条数 M = 30; % IRS元件数量 K = 1; % 用户数目(这里取单用户情况) h_dB = randn(N,K)+sqrt(-1)*randn(N,K); % 直达链路信道向量 g_dB = randn(M,N)+sqrt(-1)*randn(M,N); % BS到IRS之间的信道矩阵 theta_true = exp(sqrt(-1)*(pi*rand(M,1))); % 真实的IRS反射角向量 fai_true = h_dB' * conj(g_dB)' .* theta_true'; % 经过真实角度后的有效通道增益 cvx_begin sdp quiet variable W(N,N) hermitian semidefinite % 定义W作为Hermitian半正定矩阵 maximize(real(trace(fai_true'*W*fai_true))) subject to trace(W) <= P_max; % 发射总功率不超过设定的最大值P_max diag(W) == ones(N,1); % 对角线上元素全为1表示单位能量分配 cvx_end if ~strcmp(cvx_status,'Solved') disp('无法找到可行解'); else F_optimal = sqrtm(full(W)); end ``` 此代码片段实现了对基站传输协方差矩阵\( \mathbf{W} \)的优化,旨在最大化经过IRS反射到达用户的接收信号强度。注意这里的`quiet`选项是为了减少不必要的输出信息;实际调试过程中建议去掉以便更好地理解程序运行状态。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值