今日工作复盘文档
今天的复盘主要总结了两方面的工作内容:图像分类模型的调整和加密流量分类的论文阅读。在图像分类部分,我基于ResNet-50模型进行了全参数训练和微调实验;在论文阅读部分,我整理了近三年的相关文献,并开始深入阅读《ET-BERT》这篇论文。本文档将详细回顾今日工作内容,分析实验结果,并提出指导意见,以明确后续改进方向。
图像分类模型调整
工作内容
- 全参数训练:基于预训练的ResNet-50模型,对所有参数进行训练,训练时长15个epoch。
- 微调:冻结ResNet-50模型的大部分层,仅对最后五层进行微调,训练时长5个epoch。
实验结果
- 全参数训练:
- 训练集准确率从0.5700提升至0.8813,loss从1.1310下降至0.3307。
- 验证集准确率从0.6957提升至0.9130(Epoch 4后趋于稳定),val_loss从0.5013下降至0.2770。
- 微调:
- 训练集准确率从0.6513提升至0.9640,loss从0.9736下降至0.1201。
- 验证集准确率从0.7826提升至0.8261(Epoch 2达到峰值),随后下降至0.6522,val_loss从0.4722上升至1.0207。
分析与指导意见
- 全参数训练:
- 分析:模型表现良好,验证集准确率稳定在0.9130,val_loss持续下降,表明模型有效学习了数据特征且泛化能力较强。训练集准确率低于验证集,可能与数据量较小或训练集与验证集分布差异有关。
- 指导意见:
- 数据增强:通过旋转、翻转、缩放等技术增加训练数据的多样性,提升模型对训练集的拟合能力。
- 学习率调整:尝试降低学习率(如从0.001降至0.0001),进一步优化loss。
- 早停策略:在val_loss下降变缓时停止训练,避免资源浪费。
- 微调:
- 分析:训练集准确率提升显著,但验证集准确率在Epoch 2后下降,val_loss上升,表明模型过拟合。可能原因包括学习率过高、冻结层数过多或数据量不足。
- 指导意见:
- 降低学习率:使用更小的学习率(如0.0001),缓慢调整参数,避免破坏预训练权重。
- 解冻更多层:尝试解冻更多层(如最后10层),提升模型表达能力。
- 正则化:在最后几层加入dropout(0.3-0.5)或L2正则化,减少过拟合。
- 缩短微调epoch:在val_loss上升前停止训练(如Epoch 2或3)。
论文阅读
工作内容
- 论文整理:整理了近三年CCF A类会议和期刊中与加密流量分类相关的论文,包括《Bottom Aggregating, Top Separating》、《MIETT》、《TrafficFormer》、《Yet Another Traffic Classifier》、《MT-FlowFormer》和《ET-BERT》。
- 论文阅读:开始阅读《ET-BERT》,已完成Abstract、Introduction和Related Work部分的阅读。
理解总结
- 背景:《ET-BERT》基于《PERT》改进,针对后者预训练未优化加密流量数据的不足。
- 改进目标:
- 预训练任务:设计了两个预训练任务,考虑流量传输的结构模式和数据包载荷的双向关联。
- 微调策略:提出了两种微调策略,以适应加密流量分类任务。
指导意见
- 后续阅读重点:
- 预训练任务的具体设计:
- 明确“流量传输的结构模式”和“载荷的双向关联”的定义。
- 分析预训练任务如何编码这些特性,是否引入领域知识。
- 微调策略的实现:
- 理解两种微调策略的区别及其适用场景。
- 分析微调如何利用预训练特征,是否结合流量元数据。
- 数据与实验验证:
- 关注数据集、评估指标及与《PERT》等baseline的对比结果。
- 预训练任务的具体设计:
- 研究启发:
- 探索在预训练中进一步挖掘流量数据特性(如TLS握手中的明文信息、包间隔时间)。
- 根据任务需求(如实时分类 vs 离线分析)调整微调策略,提升实用性。
结论
今日工作在图像分类模型调整和论文阅读方面均取得进展。图像分类实验表明全参数训练效果优于微调,后续需通过数据增强和正则化进一步优化模型;论文阅读为加密流量分类研究提供了理论基础,后续需深入分析《ET-BERT》的技术细节并结合实验验证。未来工作将围绕模型优化和领域知识融合展开,以提升研究成果的实用性。