a
r
c
s
i
n
x
=
x
+
x
3
3
!
+
x
5
5
!
+
.
.
.
arcsin x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + ...
arcsinx=x+3!x3+5!x5+...
=>arcsinx 奇数阶导为1 偶数阶导为0;
F
(
x
)
=
∫
f
(
x
)
=
1
2
a
r
c
s
i
n
2
x
+
C
F(x) = \int f(x) = \frac{1}{2}arcsin^2 x + C
F(x)=∫f(x)=21arcsin2x+C
F
(
n
+
1
)
(
x
)
=
1
2
∑
i
=
0
n
+
1
(
a
r
c
s
i
n
(
i
)
x
)
∗
(
a
r
c
s
i
n
(
n
+
1
−
i
)
x
)
F^{(n+1)}(x) = \frac{1}{2}\sum_{i=0}^{n+1} (arcsin^{(i)}x)*(arcsin^{(n+1-i)}x)
F(n+1)(x)=21i=0∑n+1(arcsin(i)x)∗(arcsin(n+1−i)x)
当n为奇数时
n
+
1
4
\frac{n+1}{4}
4n+1
当n为偶数时
0
0
0
03-15
2220

04-11
2685
