分布(四)利用python绘制小提琴图

本文详细介绍了如何使用Python的seaborn库绘制和定制小提琴图,包括基本的绘制方法,以及如何通过调整参数实现多样化的图形展示,如多个变量、分组和自定义样式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分布(四)利用python绘制小提琴图

小提琴图 (Violin plot)简介

1

小提琴图主要用于显示数据分布及其概率密度。中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间(以外则为异常点),而白点则为中位数。小提琴图结合了箱线图和密度图的优点,既可以了解数据统计信息,也可以了解数据分布特点。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import matplotlib.pyplot as plt
    sns.set(style="darkgrid")
    
    # 导入数据
    df = sns.load_dataset('iris')
    
    # 利用violinplot函数绘制小提琴图
    sns.violinplot(x=df["species"], y=df["sepal_length"])
    
    plt.show()
    

    2

定制多样化的小提琴图

自定义小提琴图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

seaborn主要利用violinplot绘制小提琴图,可以通过seaborn.violinplot了解更多用法

  1. 绘制多个小提琴图
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(font='SimHei', font_scale=0.8, style="darkgrid") # 解决Seaborn中文显示问题

# 导入数据
df = sns.load_dataset('iris')
df_tips = sns.load_dataset('tips')

fig, ax = plt.subplots(1,3, figsize=(12,4))

# 多个数值变量的小提琴图
sns.violinplot(data=df.iloc[:,0:2], ax=ax[0])
ax[0].set_title('多个数值变量')

# 一个数值变量多个分组的小提琴图
sns.violinplot( x=df["species"], y=df["sepal_length"], ax=ax[1] )
ax[1].set_title('一个数值变量多个分组')

# 一个数值变量多个分组子分组的小提琴图
sns.violinplot(x="day", y="total_bill"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值