给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-search-tree
介个题的递归的思路其实很简单,利用二叉搜索树的特性,左子树小于根小于右子树,要找两个节点的公共祖先。两个节点都小于根的值,往左找,两个节点都大于根的值,往右找。除此之外都返回根。(情况有一大一小,其中一个等于根,想一想这些情况都应该返回根。)递归边界是没根惹。注意往左找往右找都要写return,不然会返回空节点
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return
if p.val<root.val and q.val<root.val:
return self.lowestCommonAncestor(root.left,p,q)
elif p.val>root.val and q.val>root.val:
return self.lowestCommonAncestor(root.right,p,q)
else:
return root
这个思路也可以写成迭代,因为只需要记录最近那个根
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return
while(root):
if p.val<root.val and q.val<root.val:
root = root.left
elif p.val>root.val and q.val>root.val:
root = root.right
else:
return root
偶最开始的思路是写一个函数 找到一个节点的所有根节点(包括它本身),存到列表内,然后比较两个节点的相同根节点,但是要返回最大的相同根节点还是最小相同根节点这一点有问题。