Python模拟随机漫步

本文通过Python代码展示了如何模拟随机漫步行为,并对比了使用内建random模块和numpy.random模块在生成大量样本值时的效率。实验结果显示numpy.random模块在速度上有显著优势。此外,还介绍了如何同时模拟多个随机漫步,以及如何分析这些漫步的统计特性,如偏离原点的距离和步数。
摘要由CSDN通过智能技术生成

本文用Python模拟随机漫步行为。

1 使用内建的的random模块

import random

position = 0
walk = [position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)

random模块每次只能生成一个样本值,效率很低。如果要生成大量样本值,可用numpy.random模块。

可用下面的代码测试两者生成1,000,0001,000,000个样本值的速度:

import numpy as np
from random import normalvariate

N = 1000000

%timeit samples = [normalvariate(0, 1) for _ in range(N)]
%timeit np.random.normal(size=N)

输出:

1.17 s ± 14.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
34.1 ms ± 504 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

2 使用numpy.random

import numpy as np

np.random.seed(12345)

nsteps = 1000
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()

注意,random.randint(a,b)函数生成的是[𝑎,𝑏][a,b]之间的整数,而numpy.random.randint(a,b)生成的是[𝑎,𝑏)[a,b)之间的整数。

最终生成的walknumpy.ndarray类型的数据。可以看一下最小和最大到达的地方,以及在何时首先偏离原点10的距离。

print(walk.min())
print(walk.max())
print((np.abs(walk) >= 10).argmax())

输出:

-3
31
37

3 同时模拟多个随机漫步

使用numpy.random()可以同时模拟多个随机漫步。这里同时模拟5,0005,000个,步长依旧设为1,0001,000。

nwalks = 5000
nsteps = 1000
draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(axis=1)

得到的walks,是一个5,000×1,0005,000×1,000的矩阵,也是numpy.ndarray类型的数据。

一共有多少次随机漫步,达到过偏离原点30的距离?

hits30 = (np.abs(walks) >= 30).any(1)
hits30
hits30.sum() # Number that hit 30 or -30

输出:

3412

在这些随机漫步过程中,平均用了多少步才偏离原点30?

crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)
crossing_times.mean()

输出:

497.04103165298943

本文首发于python黑洞网,csdn同步跟新

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值