SQL Server estimate time create(alter) index phase2

env: Windows Server 2016
        SQL Server 2016 SP2

一般在執行SQL command狀況下,我們可以透過動態視圖 "sys.dm_exec_requests"查看進度。
但是建立索引或重建所引時,在"sys.dm_exec_requests"下percent_complete卻呈現"0"。
而組織所引卻可以在"sys.dm_exec_requests"查詢到執行進度。
因此在"SQL Server estimate time create(alter) index phase1"介紹如何檢視create(alter) index進度後,新增可以執行的語句。

1.組織索引並同時查看進度
先利用指令"a"進行組織所引,接著另開新的查詢"sys.dm_exec_requests"

command:
a.ALTER INDEX [PK_test01] ON [dbo].[test01] REORGANIZE  WITH (LOB_COMPACTION = ON )

GO

b.select percent_complete from sys.dm_exec_requests wherecommand='dbcc'


2.改良"SQL Server estimate time create(alter) index phase1"script內容。
在執行評估中,發現落差大的原因在於'Parallelism','Online Index Insert'這兩項評估筆數造成時間的落差,因此在這次的語法中過濾掉,增加時間準確性。
command:

USE MASTER
GO

SET NOCOUNT  ON
SET LOCK_TIMEOUT 10000

DECLARE @SPID INT --= 80;
DECLARE @SQLSTR NVARCHAR(MAX)
DECLARE @Conditions NVARCHAR(MAX)

SELECT 
@SPID=SPID
FROM SYSPROCESSES SP 
INNER JOIN sys.dm_exec_requests ER
ON sp.spid = ER.session_id
CROSS APPLY SYS.DM_EXEC_SQL_TEXT(er.sql_handle) EST
WHERE ER.command IN ('CREATE INDEX', 'ALTER INDEX')
ORDER BY CPU DESC

--Fetch all steps of Create or Alter Index
SELECT @Conditions =stuff((
SELECT
CAST(physical_operator_name AS NVARCHAR) + ''', N'''
FROM sys.dm_exec_query_profiles   
WHERE session_id=@SPID and physical_operator_name not in('Parallelism','Online Index Insert')
GROUP BY node_id,physical_operator_name  
FOR XML PATH('')),1,0,'')

SET @Conditions='(N''' +LEFT(@Conditions, LEN(@Conditions)-4) +')'
--PRINT @Conditions

SET @SQLSTR='SELECT 
MAX(IIF(qp.[close_time] = 0 AND qp.[first_row_time] > 0, [physical_operator_name], N''<Transition>'')) AS [CurrentStep],
SUM(qp.[estimate_row_count]) AS [TotalRows],
SUM(qp.[row_count]) AS [RowsProcessed],
(SUM(qp.[estimate_row_count]) - SUM(qp.[row_count])) AS [RowsLeft], 
CONVERT(DECIMAL(5, 2), ((SUM(qp.[row_count]) * 1.0) / SUM(qp.[estimate_row_count])) * 100) AS [CompletePercent],
CONVERT(varchar, DATEADD(ms, ((MAX(qp.last_active_time) - MIN(qp.first_active_time)) / 1000.0) * 1000, 0), 114)  AS [AlreadyRunTime_hhmiss], 
CONVERT(varchar, DATEADD(ms, ((((MAX(qp.last_active_time) - MIN(qp.first_active_time)) / 1000.0) / SUM(qp.[row_count])) * (SUM(qp.[estimate_row_count]) - SUM(qp.[row_count])))* 1000, 0), 114)  AS [RemainTimeToReady_hhmiss],
DATEADD(SECOND, ((((MAX(qp.last_active_time) - MIN(qp.first_active_time)) / 1000.0) / SUM(qp.[row_count])) * (SUM(qp.[estimate_row_count]) - SUM(qp.[row_count]))), GETDATE()) AS [EstimatedCompletionTime]
FROM sys.dm_exec_query_profiles qp 
WHERE qp.[physical_operator_name] IN ' + @Conditions +'
    AND  
qp.[session_id] = @SPID'

--PRINT @SQLSTR
EXECUTE SP_EXECUTESQL @SQLSTR, N'@SPID INT',
@SPID=@SPID

--Run this in a different session than the session in which your query is running. 
--Note that you may need to change session id 54 below with the session id you want to monitor.
SELECT
node_id,
physical_operator_name, 
SUM(row_count) row_count, 
SUM(estimate_row_count) AS estimate_row_count, 
CAST(SUM(row_count)*100 AS float)/IIF(SUM(estimate_row_count)>0, SUM(estimate_row_count), 1)  as estimate_percent_complete  
FROM sys.dm_exec_query_profiles   
WHERE session_id=@SPID
GROUP BY node_id,physical_operator_name  
ORDER BY node_id;

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值