DP+分割
题目-天上的星星
在一个星光璀璨的夜晚,蒜头巨一颗一颗的数天上的星星。
蒜头君给天上巧妙的画了一个直角坐标系,让所有的星星都分布在第一象限。天上有
n
n
n颗星星,他能知道每一颗星星的坐标和亮度。
现在,蒜头君问自己
q
q
q次,每次他问自己每个矩形区域的星星的亮度和是多少(包含边界的星星)
输入格式
第一行输入一个整数
n
(
1
≤
n
≤
50000
)
n(1 \leq n \leq 50000)
n(1≤n≤50000)表示星星的数量。
接下来
n
n
n行,每行输入三个整数
x
,
y
,
w
(
0
≤
x
,
y
,
z
≤
2000
)
x, y, w(0 \leq x, y, z \leq 2000)
x,y,w(0≤x,y,z≤2000), 表示在坐标
(
x
,
y
)
(x,y)
(x,y)有一颗亮度为
w
w
w的星星。注意一个点可能有多个星星。
接下来一行输入一个整数
q
(
1
≤
q
≤
50000
)
q(1 \leq q \leq 50000)
q(1≤q≤50000),表示查询的次数。
接下来
q
q
q行,每行输入四个整数
x
1
,
y
1
,
x
2
,
y
2
x_1, y_1, x_2, y_2
x1,y1,x2,y2,期中
(
x
1
,
y
1
)
表
示
查
询
的
矩
形
的
左
下
角
的
坐
标
,
(x1,y1)表示查询的矩形的左下角的坐标,
(x1,y1)表示查询的矩形的左下角的坐标,(x_2, y_2)$表示查询的矩形的右上角的坐标,
0
≤
x
1
≤
x
2
≤
2000
,
0
≤
y
1
≤
y
2
≤
2000
0 \leq x_1 \leq x_2 \leq 2000, 0 \leq y_1 \leq y_2 \leq 2000
0≤x1≤x2≤2000,0≤y1≤y2≤2000
输出格式
对于每一次查询,输出一行一个整数,表示查询的矩形区域内的星星的亮度综合。
解析
看到这道题,由于坐标的范围只有2000,第一反应考虑预处理计算出从点 ( 0 , 0 ) (0,0) (0,0)到点 ( x , y ) (x,y) (x,y)区域内星星的总亮度。这个考虑用DP加矩形分割来计算, 可以这样思考, d p [ x ] [ y ] dp[x][y] dp[x][y]表示从点 ( 0 , 0 ) (0,0) (0,0)到点 ( x , y ) (x,y) (x,y)的亮度之和,那么可以得到: d p [ x ] [ y ] = d p [ x ] [ y ] + d p [ x − 1 ] [ y ] + d p [ x ] [ y − 1 ] − d p [ x − 1 ] [ y − 1 ] dp[x][y]=dp[x][y]+dp[x-1][y]+dp[x][y-1]-dp[x-1][y-1] dp[x][y]=dp[x][y]+dp[x−1][y]+dp[x][y−1]−dp[x−1][y−1], 对0进行特判即可,查询的时候为 a n s = d p [ x 2 ] [ y 2 ] − d p [ x 2 ] [ y 1 − 1 ] − d p [ x 1 − 1 ] [ y 2 ] + d p [ x 1 − 1 ] [ y 1 − 1 ] ans=dp[x_2][y_2]-dp[x_2][y_1-1]-dp[x_1-1][y_2]+dp[x_1-1][y_1-1] ans=dp[x2][y2]−dp[x2][y1−1]−dp[x1−1][y2]+dp[x1−1][y1−1], 依然需要对0的地方特别处理一下即可。
AC代码
// 小学生一发的刷题之路
//
// dp+矩形分割
//
//
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <queue>
#include <deque> //双向队列;
#include <cmath>
#include <set>
#include <stack>
#include <map>
#include <vector>
#include <cstdlib>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const double PI=acos(-1.0);
const double eps=1e-8;
const int maxn=2000+5;
const int maxm=1e6+5;
const ll mod=1e9+7;
const int INF=1e8;
template<class T>
inline void read(T &ret){ //快速输入模版;
ret=0;
int f=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
ret=ret*10+c-'0';
c=getchar();
}
ret*=f;
}
template <class T>
inline void out(T ret){ //快速输出模版;
if(ret>9)
{
out(ret/10);
}
putchar(ret%10+'0');
}
int n,q,dp[maxn][maxn];
int main()
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
int x,y,w;
for(int i=1;i<=n;i++){
scanf("%d %d %d",&x,&y,&w);
dp[x][y]+=w;
}
for(int i=0;i<=2000;i++)
for(int j=0;j<=2000;j++){
if(i==0&&j==0){
continue;
}else if(i==0){
dp[i][j]=dp[i][j]+dp[i][j-1];
}else if(j==0){
dp[i][j]=dp[i][j]+dp[i-1][j];
}else{
dp[i][j]=dp[i][j]+dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
}
}
//cout<<dp[2000][2000]<<endl;
scanf("%d",&q);
int x1,y1,x2,y2,ans;
while(q--){
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
if(x1==0&&y1==0){
printf("%d\n",dp[x2][y2]);
}else if(x1==0){
ans=dp[x2][y2]-dp[x2][y1-1];
printf("%d\n",ans);
}else if(y1==0){
ans=dp[x2][y2]-dp[x1-1][y2];
printf("%d\n",ans);
}else{
ans=dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1];
printf("%d\n",ans);
}
}
return 0;
}
新的开始,每天都要快乐哈。