题目描述:
有 n n n个物品,每个物品有两个属性 p p p和 d d d,从这 n n n个物品中选取 m m m个,记 p p p的总和为 s p sp sp, d d d的总和为 s d sd sd,要使得 ∣ s p − s d ∣ |sp-sd| ∣sp−sd∣尽量小,如果一样使 s p + s d sp+sd sp+sd尽量大,如果还有一样,输出任意组合,输出物品编号并按升序输出。
解题思路:
设
d
p
(
i
,
j
,
k
)
dp(i,j,k)
dp(i,j,k)为前
i
i
i个物品选了
j
j
j个并且
p
p
p的总和和
d
d
d的总和的差为
k
k
k,(即
s
p
−
s
d
sp-sd
sp−sd)时
s
p
sp
sp的最大值(因为可能为负,我们设置一个偏移量400把选优值改成正,即原来
k
k
k的区间是[-400,400],那么我们给它都加个400,变成[0,800]),因为当差值一样时我们希望
s
p
+
s
d
sp+sd
sp+sd尽量大那么也就是让
s
p
sp
sp尽量大,枚举
i
,
j
,
k
i,j,k
i,j,k。
接下来当面对每一个物品时可以选择选与不选:
如果不选就和从前
i
−
1
i-1
i−1个物品中选
m
m
m个并且差值为
k
k
k的时候一样,即
d
p
(
i
,
j
,
k
)
=
d
p
(
i
−
1
,
j
,
k
)
dp(i,j,k)=dp(i-1,j,k)
dp(i,j,k)=dp(i−1,j,k)
如果选就是从前
i
−
1
i-1
i−1个物品中选
m
−
1
m-1
m−1个并且差值为
k
−
(
p
(
i
)
−
d
(
i
)
)
k-(p(i)-d(i))
k−(p(i)−d(i))的时候的值再加上当前物品
p
p
p的值
p
(
i
)
p(i)
p(i),因为当前物品的差值为
(
p
(
i
)
−
d
(
i
)
(p(i)-d(i)
(p(i)−d(i),我要让当前差值为
k
k
k,那么没取这个物品的时候的差值肯定要是
k
−
(
p
(
i
)
−
d
(
i
)
)
k-(p(i)-d(i))
k−(p(i)−d(i)),这样相加后才是
k
k
k。(当然首先要判断能不能选当前物品)
然后输出路径:
首先我们找到并记录选
m
m
m个的时候差值的绝对值最小的时候的差值和
s
p
sp
sp的值作为当前状态(最优解),然后倒序枚举
n
n
n个物品,判断当前(最优解)状态下这个物品是否可取,如果可取记录并更新状态信息。最后输出即可。
注意:由于这题是Special Judge,不论你是什么错误返回的都是WA,所以如果你感觉做对了但还是WA了,多检查格式、数组越界等问题。
代码:
#include <bits/stdc++.h>
using namespace std;
int n,m,p[205],d[205];
int dp[205][25][805];//dp[i][j][k]前i个取j个,差为k的p和的最大值
int main(){
int cas=0;
while(scanf("%d%d",&n,&m))
{
if(n==0&&m==0)break;
for(int i=1;i<=n;i++)
scanf("%d%d",&p[i],&d[i]);
memset(dp,-1,sizeof(dp));
for(int i=0;i<201;i++)
dp[i][0][400]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<805;k++)
{
dp[i][j][k]=dp[i-1][j][k];
if(k>=p[i]-d[i]&&k-(p[i]-d[i])<805&&dp[i-1][j-1][k-(p[i]-d[i])]!=-1)
dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-1][k-(p[i]-d[i])]+p[i]);
}
int cha=1e9,ans=-1;//差,p和
for(int i=m;i<=n;i++)
for(int k=0;k<805;k++)
{
if(dp[i][m][k]==-1)continue;
if(abs(cha)>abs(k-400))
{
//差能更小
cha=k-400;
ans=dp[i][m][k];
}
else if(abs(cha)==abs(k-400)&&ans+ans-cha<dp[i][m][k]+dp[i][m][k]-(k-400))
{
//差一样,p和更大
cha=k-400;
ans=dp[i][m][k];
}
}
printf("Jury #%d\n",++cas);
printf("Best jury has value %d for prosecution and value %d for defence:\n",ans,ans-cha);
stack<int> st;
for(int i=n;i>0&&m;i--)
{
if(dp[i][m][400+cha]==ans&&dp[i][m][400+cha]!=dp[i-1][m][400+cha])
{
st.push(i);
m--;
cha-=(p[i]-d[i]);
ans-=p[i];
}
}
while(!st.empty())
{
int x=st.top();
printf(" %d",x);
st.pop();
}
printf("\n\n");
}
return 0;
}