POJ1015 Jury Compromise 题解(AcWing280、UVA323)

题目描述:

n n n个物品,每个物品有两个属性 p p p d d d,从这 n n n个物品中选取 m m m个,记 p p p的总和为 s p sp sp d d d的总和为 s d sd sd,要使得 ∣ s p − s d ∣ |sp-sd| spsd尽量小,如果一样使 s p + s d sp+sd sp+sd尽量大,如果还有一样,输出任意组合,输出物品编号并按升序输出。

解题思路:

d p ( i , j , k ) dp(i,j,k) dp(i,j,k)为前 i i i个物品选了 j j j个并且 p p p的总和和 d d d的总和的差为 k k k,(即 s p − s d sp-sd spsd)时 s p sp sp的最大值(因为可能为负,我们设置一个偏移量400把选优值改成正,即原来 k k k的区间是[-400,400],那么我们给它都加个400,变成[0,800]),因为当差值一样时我们希望 s p + s d sp+sd sp+sd尽量大那么也就是让 s p sp sp尽量大,枚举 i , j , k i,j,k i,j,k
接下来当面对每一个物品时可以选择选与不选:
如果不选就和从前 i − 1 i-1 i1个物品中选 m m m个并且差值为 k k k的时候一样,即 d p ( i , j , k ) = d p ( i − 1 , j , k ) dp(i,j,k)=dp(i-1,j,k) dp(i,j,k)=dp(i1,j,k)
如果选就是从前 i − 1 i-1 i1个物品中选 m − 1 m-1 m1个并且差值为 k − ( p ( i ) − d ( i ) ) k-(p(i)-d(i)) k(p(i)d(i))的时候的值再加上当前物品 p p p的值 p ( i ) p(i) p(i),因为当前物品的差值为 ( p ( i ) − d ( i ) (p(i)-d(i) (p(i)d(i),我要让当前差值为 k k k,那么没取这个物品的时候的差值肯定要是 k − ( p ( i ) − d ( i ) ) k-(p(i)-d(i)) k(p(i)d(i)),这样相加后才是 k k k。(当然首先要判断能不能选当前物品)
然后输出路径:
首先我们找到并记录选 m m m个的时候差值的绝对值最小的时候的差值和 s p sp sp的值作为当前状态(最优解),然后倒序枚举 n n n个物品,判断当前(最优解)状态下这个物品是否可取,如果可取记录并更新状态信息。最后输出即可。
注意:由于这题是Special Judge,不论你是什么错误返回的都是WA,所以如果你感觉做对了但还是WA了,多检查格式、数组越界等问题。

代码:

#include <bits/stdc++.h>
using namespace std;
int n,m,p[205],d[205];
int dp[205][25][805];//dp[i][j][k]前i个取j个,差为k的p和的最大值 
int main(){
	int cas=0;
	while(scanf("%d%d",&n,&m))
	{
		if(n==0&&m==0)break;
		for(int i=1;i<=n;i++)
			scanf("%d%d",&p[i],&d[i]);
			
		memset(dp,-1,sizeof(dp));
		for(int i=0;i<201;i++)
			dp[i][0][400]=0;
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
				for(int k=0;k<805;k++)
				{
					dp[i][j][k]=dp[i-1][j][k];
					if(k>=p[i]-d[i]&&k-(p[i]-d[i])<805&&dp[i-1][j-1][k-(p[i]-d[i])]!=-1)
						dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-1][k-(p[i]-d[i])]+p[i]);
				}
		
		int cha=1e9,ans=-1;//差,p和 
		for(int i=m;i<=n;i++)
			for(int k=0;k<805;k++)
			{
				if(dp[i][m][k]==-1)continue;
				if(abs(cha)>abs(k-400))
				{
					//差能更小 
					cha=k-400;
					ans=dp[i][m][k];
				}
				else if(abs(cha)==abs(k-400)&&ans+ans-cha<dp[i][m][k]+dp[i][m][k]-(k-400))
				{
					//差一样,p和更大 
					cha=k-400;
					ans=dp[i][m][k];
				}	
			}		
		printf("Jury #%d\n",++cas);
		printf("Best jury has value %d for prosecution and value %d for defence:\n",ans,ans-cha);
		stack<int> st;
		for(int i=n;i>0&&m;i--)
		{
			if(dp[i][m][400+cha]==ans&&dp[i][m][400+cha]!=dp[i-1][m][400+cha])
			{
				st.push(i);
				m--;
				cha-=(p[i]-d[i]);
				ans-=p[i];
			}
		}
		while(!st.empty())
		{
			int x=st.top();
			printf(" %d",x);
			st.pop();
		}
		printf("\n\n");
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值