Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)/torch_scatter

在使用torch_geometric.nn全局最大池化时遇到exit code 139 (SIGSEGV)错误。问题源于torch_scatter不支持一维输入,解决方案是通过unsqueeze()增加维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

这个问题较为常见,如果大家不是在使用torch geometric以及scatter等依赖包的时候遇到的,请略过此文章

**
我是在用torch_geometric.nn中的global_max_pool时候遇到的问题,问题描述如下:
Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)
原因:应该是torch_scatter中的代码更新了,作者忽略了维度的问题,我调global_max_pool(data,pool_mask)的时候,data是[100]的tensor,pool_mask也是[100]的,所以就爆了,或者是堆栈溢出,或者是内存溢出,或者是上边的错误,终归原因都是这个函数不支持一维的,用unsqueeze()加维度就可以
解决代码:

global_max_pool(torch.unsqueeze(data
引用\[1\]:Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)是一个错误代码,表示程序在运行过程中由于收到了SIGSEGV信号而被中断。SIGSEGV信号通常表示程序访问了无效的内存地址,导致了段错误。引用\[2\]中提到了具体情况,你在学校的Linux服务器上使用了PyTorch模型进行数据预测,之前一切正常,但突然出现了这个错误。你尝试了一些解决方法,包括使用PyTorch Serve和Flask来部署模型,但似乎没有解决问题。引用\[3\]中提到了作者遇到类似问题的经历,作者也感到非常气愤,因此写了一篇博客来分享解决方法。根据这些信息,我可以给出一些可能的解决方案: 1. 检查代码: 首先,你可以仔细检查你的代码,特别是与内存访问相关的部分。确保你没有访问无效的内存地址或者进行了未初始化的指针操作。 2. 检查依赖: 确保你的服务器上安装了正确版本的PyTorch和其他相关的依赖库。有时候版本不兼容或者缺少某些依赖会导致这种错误。 3. 调试程序: 你可以使用调试工具来定位问题所在。例如,你可以使用GDB来跟踪程序的执行过程并查看错误发生的位置。 4. 查找解决方案: 在网上搜索类似的问题,看看其他人是如何解决的。你可以参考引用\[3\]中作者的博客,看看是否有相关的解决方法适用于你的情况。 请注意,以上只是一些可能的解决方案,具体的解决方法可能因情况而异。如果问题仍然存在,你可能需要进一步调查或寻求专业人士的帮助。 #### 引用[.reference_title] - *1* *2* *3* [Process finished with exit code 139 (interrupted by signal 11: SIGSEGV)](https://blog.csdn.net/qq_25814297/article/details/127496265)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这个人很懒,还没有设置昵称...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值